
Stateflow® and Stateflow® Coder 6
User’s Guide

How to Contact The MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Stateflow and Stateflow Coder User’s Guide

© COPYRIGHT 1997–2007 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined
in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of
this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and Documentation
by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government’s
needs or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB, Simulink, Stateflow, Handle Graphics, Real-Time Workshop, and xPC TargetBox
are registered trademarks, and SimBiology, SimEvents, and SimHydraulics are trademarks of
The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective
holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History
May 1997 First printing New
January 1999 Second printing Revised for Stateflow 2.0 (Release 11)
September 2000 Third printing Revised for Stateflow 4.0 (Release 12))
June 2001 Fourth printing Revised for Stateflow 4.1 (Release 12.1)
July 2002 Fifth printing Revised for Stateflow 5.0 (Release 13)
January 2003 Online only Revised for Stateflow 5.1 (Release 13SP1) (Renamed from

Stateflow User’s Guide)
June 2004 Online only Revised for Stateflow 6.0 (Release 14)
October 2004 Online only Revised for Stateflow 6.1 (Release 14SP1)
March 2005 Online only Revised for Stateflow 6.21 (Release 14SP2)
September 2005 Online only Revised for Stateflow 6.3 (Release 14SP3)
March 2006 Online only Revised for Stateflow 6.4 (Release R2006a)
September 2006 Online only Revised for Stateflow 6.5 (Release R2006b)
March 2007 Online only Revised for Stateflow 6.6 (Release R2007a)

Contents

Stateflow Concepts

1
Finite State Machine Concepts . 1-3

What Is a Finite State Machine? . 1-3
Finite State Machine Representations 1-3
Stateflow Representations . 1-4
Notation . 1-4
Semantics . 1-4
References . 1-5

Stateflow and Simulink . 1-6
The Simulink Model and the Stateflow Machine 1-6
Stateflow Data Dictionary of Objects 1-6
Defining Stateflow Interfaces to Simulink 1-8

Stateflow Diagram Objects . 1-10
States . 1-11
Transitions . 1-13
Default Transitions . 1-14
Events . 1-15
Data . 1-15
Conditions . 1-16
History Junction . 1-16
Actions . 1-17
Connective Junctions . 1-19

Stateflow Hierarchy of Objects . 1-21

Exploring a Real-World Stateflow Application 1-24
Overview of the "fuel rate controller" Model 1-24
Control Logic of the "fuel rate controller" Model 1-28
Simulating the "fuel rate controller" Model 1-30

v

Stateflow Notation

2
Overview of Stateflow Objects . 2-3

Graphical Objects . 2-3
Nongraphical Objects . 2-4
The Stateflow Data Dictionary of Objects 2-5

States . 2-6
What Is a State? . 2-6
State Hierarchy . 2-6
State Decomposition . 2-8
State Labels . 2-9

Transitions . 2-13
What Is a Transition? . 2-13
Transition Hierarchy . 2-14
Transition Label Notation . 2-15
Valid Transitions . 2-16

Transition Connections . 2-18
Transitions to and from Exclusive (OR) States 2-18
Transitions to and from Junctions . 2-18
Transitions to and from Exclusive (OR) Superstates 2-19
Transitions to and from Substates . 2-20
Self-Loop Transitions . 2-21
Inner Transitions . 2-22

Default Transitions . 2-26
What Is a Default Transition? . 2-26
Drawing Default Transitions . 2-26
Labeling Default Transitions . 2-27
Default Transition Examples . 2-27

Connective Junctions . 2-31
What Is a Connective Junction? . 2-31
Flow Diagram Notation with Connective Junctions 2-31

History Junctions . 2-38
What Is a History Junction? . 2-38
History Junctions and Inner Transitions 2-39

vi Contents

Boxes . 2-40

Graphical Functions . 2-41

Stateflow Semantics

3
Executing an Event . 3-3

Sources for Stateflow Events . 3-3
Processing Events . 3-4

Executing a Chart . 3-6
Executing an Inactive Chart . 3-6
Executing an Active Chart . 3-6
Executing a Chart at Initialization 3-7

Executing a Transition . 3-8
Transition Flow Graph Types . 3-8
Executing a Set of Flow Graphs . 3-9

Transition Testing Order . 3-11
Implicit Order Mode . 3-11
Explicit Order Mode . 3-15

Entering, Executing, and Exiting a State 3-21
Entering a State . 3-21
Executing an Active State . 3-23
Exiting an Active State . 3-23
State Execution Example . 3-24

Execution Order for Parallel States 3-27
Implicit Ordering of Parallel States 3-28
Explicit Ordering of Parallel States 3-29
Maintaining Order of Parallel States 3-31
How Stateflow Assigns Priorities to Restored States 3-35
Switching Between Implicit and Explicit Ordering 3-37
Ordering of Parallel States in Boxes and Subcharts 3-37

vii

Early Return Logic for Event Broadcasts 3-39

Semantic Examples . 3-42
Directed Event Broadcasting . 3-43

Transitions to and from Exclusive (OR) States
Examples . 3-44
Label Format for a State-to-State Transition Example . . . 3-44
Transitioning from State to State with Events Example . . 3-45
Transitioning from a Substate to a Substate with Events

Example . 3-48

Condition Action Examples . 3-50
Condition Action Example . 3-50
Condition and Transition Actions Example 3-51
Condition Actions in For Loop Construct Example 3-53
Condition Actions to Broadcast Events to Parallel (AND)

States Example . 3-54
Cyclic Behavior to Avoid with Condition Actions

Example . 3-54

Default Transition Examples . 3-56
Default Transition in Exclusive (OR) Decomposition

Example . 3-56
Default Transition to a Junction Example 3-57
Default Transition and a History Junction Example 3-58
Labeled Default Transitions Example 3-59

Inner Transition Examples . 3-62
Processing Events with an Inner Transition in an Exclusive

(OR) State Example . 3-62
Processing Events with an Inner Transition to a Connective

Junction Example . 3-65
Inner Transition to a History Junction Example 3-68

Connective Junction Examples . 3-70
Label Format for Transition Segments Example 3-70
If-Then-Else Decision Construct Example 3-71
Self-Loop Transition Example . 3-73
For Loop Construct Example . 3-74
Flow Diagram Notation Example . 3-75

viii Contents

Transitions from a Common Source to Multiple Destinations
Example . 3-77

Transitions from Multiple Sources to a Common Destination
Example . 3-78

Transitions from a Source to a Destination Based on a
Common Event Example . 3-79

Backtracking Behavior in Flow Graphs Example 3-80

Event Actions in a Superstate Example 3-82

Parallel (AND) State Examples . 3-84
Event Broadcast State Action Example 3-84
Event Broadcast Transition Action with a Nested Event

Broadcast Example . 3-87
Event Broadcast Condition Action Example 3-91

Directed Event Broadcasting Examples 3-96
Directed Event Broadcast Using Send Example 3-96
Directed Event Broadcasting Using Qualified Event Names

Example . 3-98

Creating Stateflow Chart Diagrams

4
Creating a Stateflow Chart . 4-2

Creating States in Stateflow Charts 4-5
Creating a State . 4-5
Moving and Resizing States . 4-7
Creating Substates and Superstates 4-7
Grouping States . 4-8
Specifying Substate Decomposition 4-8
Specifying Activation Order for Parallel States 4-9
Changing State Properties . 4-9
Labeling States . 4-11
Outputting State Activity to Simulink 4-14

Creating Transitions in Stateflow Charts 4-15

ix

Creating a Transition . 4-15
Creating Straight Transitions . 4-16
Labeling Transitions . 4-17
Moving Transitions . 4-18
Changing Transition Arrowhead Size 4-20
Creating Self-Loop Transitions . 4-20
Creating Default Transitions . 4-21
Changing Transition Properties . 4-22

Creating Flowcharts with Connective Junctions 4-24
Creating a Connective Junction . 4-24
Changing Connective Junction Size 4-25
Changing Junction Properties . 4-25

Using the Stateflow Editor . 4-27
Stateflow Diagram Editor Window 4-27
Displaying the Context Menu for Objects 4-29
Specifying Colors and Fonts . 4-30
Differentiating Syntax Elements in the Stateflow Action

Language . 4-33
Selecting and Deselecting Objects . 4-36
Cutting and Pasting Objects . 4-37
Copying Objects . 4-37
Editing Object Labels . 4-38
Viewing Stateflow Objects in the Model Explorer 4-38
Zooming a Diagram . 4-39
Undoing and Redoing Editor Operations 4-41
Stateflow Chart Notes Dialog Box . 4-42
Keyboard Shortcuts for Stateflow Diagrams 4-44
Customizing the Stateflow Editor . 4-47

Building Mealy and Moore Charts in Stateflow

5
Overview of Mealy and Moore Machines 5-2

Creating Mealy and Moore Charts 5-5

Design Considerations for Mealy Charts 5-8

x Contents

Mealy Semantics . 5-8
Design Rules for Mealy Charts . 5-8
Example: Mealy Vending Machine 5-11

Design Considerations for Moore Charts 5-14
Moore Semantics . 5-14
Design Rules for Moore Charts . 5-14
Example: Moore Traffic Light . 5-20

Changing Chart Type . 5-24

Debugging Mealy and Moore Charts 5-25

Extending Stateflow Chart Diagrams

6
Using History Junctions to Extend Charts and

States . 6-3
Creating a History Junction . 6-3
Changing History Junction Size . 6-4
Changing History Junction Properties 6-4

Using Subcharts to Extend Charts 6-6
What Is a Subchart? . 6-6
Creating a Subchart . 6-7
Manipulating Subcharts as Objects 6-8
Opening a Subchart . 6-9
Editing a Subchart . 6-10
Navigating Subcharts . 6-10

Using Supertransitions to Extend Transitions 6-12
What Is a Supertransition? . 6-12
Drawing a Supertransition Into a Subchart 6-13
Drawing a Supertransition Out of a Subchart 6-16
Labeling Supertransitions . 6-17

Extending Transitions with Smart Behavior 6-19
Setting Smart Behavior in Transitions 6-19

xi

What Smart Transitions Do . 6-20
What Nonsmart Transitions Do . 6-26

Using Functions to Extend Actions 6-29
Creating a Graphical Function . 6-29
Programming Different Types of Functions 6-33
Defining Graphical Function Data . 6-39
Calling Graphical Functions in Stateflow 6-41
Exporting Graphical Functions . 6-41
Specifying Graphical Function Properties 6-42

Using Boxes to Extend Chart Diagrams 6-45
Creating a State . 6-45
Changing a State to a Box . 6-46
Using Boxes in Stateflow . 6-47

Using Notes to Extend Chart Diagrams 6-48
Creating Notes . 6-48
Editing Existing Notes . 6-48
Changing Note Font and Color . 6-49
Moving Notes . 6-50
Deleting Notes . 6-50

Reporting Chart Diagrams . 6-51
Printing and Reporting on Stateflow Charts 6-51
Generating a Model Report in Stateflow 6-53
Printing the Current Stateflow Diagram 6-56
Printing a Stateflow Book . 6-56

Defining Events and Data

7
Adding Events . 7-4

Visibility of Events . 7-4
How to Add Events . 7-4

Setting Event Properties in the Event Dialog 7-8
Event Properties Dialog . 7-8

xii Contents

Accessing the Event Properties Dialog 7-9
Property Fields . 7-10

Sharing Events with Simulink . 7-13
Defining Input Events . 7-13
Associating Input Events with Control Signals 7-14
Defining Output Events . 7-14
Associating an Output Event with an Output Port 7-15
Accessing Simulink Subsystems from Stateflow Events . . 7-16
Setting Event Triggers . 7-18

Sharing Events with Stateflow External Code 7-21
Exporting Events to Stateflow External Code 7-21
Importing Events from Stateflow External Code 7-22

Defining Implicit Events . 7-24
Referencing Implicit Events . 7-24
Example of an Implicit Event . 7-25

Adding Data . 7-27
Adding Data Using the Stateflow Editor 7-27
Adding Data Using the Model Explorer 7-27

Setting Data Properties in the Data Dialog 7-31
The Data Properties Dialog . 7-31
Setting General Properties . 7-33
Setting Value Attributes Properties 7-39
Setting Description Properties . 7-42
Entering Expressions and Parameters for Data

Properties . 7-42

Sharing Stateflow Data with Simulink and MATLAB . . 7-46
Sharing Input and Output Data with Simulink 7-46
Resolving Signal Objects for Output Data 7-48
Bringing Simulink Parameters into Stateflow 7-49
Initializing Data from the MATLAB Base Workspace 7-50
Saving Data to the MATLAB Workspace 7-51

Sharing Global Data with Simulink 7-53
Stateflow Works with Local and Global Data Stores 7-53
Accessing Data Store Memory from a Stateflow Chart . . . 7-54

xiii

Diagnostics for Sharing Data Between Stateflow and
Simulink . 7-57

Best Practices for Using Data Stores in Stateflow 7-58

Sharing Data Between Charts and with External
Modules . 7-59
Sharing Data Between Charts in a Stateflow Machine . . . 7-59
Sharing Stateflow Data with External Modules 7-60

Typing Stateflow Data . 7-63
Specifying Modes and Types . 7-63
Built-In Data Types . 7-66
Inheriting Data Types from Simulink 7-67
Deriving Data Types from Previously Defined Data 7-68
Typing Data by Using an Alias . 7-69
Strong Data Typing with Simulink I/O 7-70

Sizing Stateflow Data . 7-72
Sizing Data by Expression . 7-72
Inheriting Input and Output Data Size from Simulink . . . 7-73

Defining Temporary Data . 7-75

Guidelines for Inheriting Data and Event Properties . . 7-77
Inheriting Output Data Properties 7-77
Inheriting Properties in Libraries . 7-77

Transferring Events and Data Across Models 7-78

Using Actions in Stateflow

8
Defining Action Types . 8-3

State Action Types . 8-3
Transition Action Types . 8-7
Example of Action Type Execution 8-9

xiv Contents

Using Operations in Actions . 8-12
Binary and Bitwise Operations . 8-12
Unary Operations . 8-15
Unary Actions . 8-15
Assignment Operations . 8-16
Pointer and Address Operations . 8-17
Type Cast Operations . 8-17

Using Special Symbols in Actions 8-20
Comment Symbols . 8-20
Hexadecimal Notation Symbols . 8-20
Infinity Symbol, inf . 8-21
Line Continuation Symbol, ... 8-21
Literal Code Symbol, $. 8-21
MATLAB Display Symbol, ; . 8-21
Single-Precision Floating-Point Number Symbol, F 8-21
Time Symbol, t . 8-21

Calling C Functions in Actions . 8-23
Calling C Library Functions . 8-23
Calling the abs Function . 8-24
Calling min and max Functions . 8-24
Calling User-Written C Code Functions 8-25

Using MATLAB Functions and Data in Actions 8-29
ml Namespace Operator . 8-29
ml Function . 8-30
ml Expressions . 8-32
Which ml Should I Use? . 8-33
ml Data Type . 8-34
Inferring Return Size for ml Expressions 8-37

Using Data and Event Arguments in Actions 8-42

Using Arrays in Actions . 8-44
Array Notation . 8-44
Arrays and Custom Code . 8-45

Broadcasting Events in Actions . 8-46
Event Broadcasting . 8-46
Directed Event Broadcasting . 8-48

xv

Using Temporal Logic in Actions . 8-51
Rules for Using Temporal Logic Operators 8-51
after Temporal Logic Operator . 8-52
before Temporal Logic Operator . 8-54
at Temporal Logic Operator . 8-55
every Temporal Logic Operator . 8-56
in Temporal Logic Operator . 8-57
Conditional and Event Notation . 8-58
Temporal Logic Events . 8-58

Using Change Detection in Actions 8-60
About Change Detection . 8-60
Running a Model That Demonstrates Change Detection . . 8-61
How Change Detection Works . 8-64
Change Detection Operators . 8-67
Change Detection Example . 8-71

Using Bind Actions to Control Function-Call
Subsystems . 8-74
Binding a Function-Call Subsystem to a State 8-74
Example of How to Bind a Function-Call Subsystem to a

State . 8-78
Simulating a Bound Function-Call Subsystem 8-80
Using Stateflow Logic with Binding 8-83
Avoiding Muxed Trigger Events with Binding 8-87

Using Fixed-Point Data in Stateflow

9
What Is Fixed-Point Data? . 9-2

Fixed-Point Numbers . 9-2
Fixed-Point Operations . 9-3

Using Fixed-Point Data in Stateflow 9-5
How Stateflow Defines Fixed-Point Data 9-5
Specifying Fixed-Point Data in Stateflow 9-7
Fixed-Point Context-Sensitive Constants 9-8
Tips for Using Fixed-Point Data in Stateflow 9-9
Overflow Detection for Fixed-Point Types 9-11

xvi Contents

Sharing Fixed-Point Data with Simulink 9-12

Fixed-Point "Bang-Bang Control" Example 9-13
Opening the Fixed-Point "Bang-Bang Control" Example . . 9-13
Exploring the Fixed-Point "Bang-Bang Control"

Example . 9-14

Operations with Fixed-Point Data 9-17
Supported Operations with Fixed-Point Operands 9-17
Promotion Rules for Fixed-Point Operations 9-19
Assignment (=, :=) Operations . 9-25
Fixed-Point Conversion Operations 9-30
Autoscaling of Stateflow Fixed-Point 9-31

Defining Interfaces to Simulink and MATLAB

10
Overview of Stateflow Interfaces . 10-3

Stateflow Interfaces . 10-3
Typical Tasks to Define Stateflow Interfaces 10-4
Where to Find More Information on Events and Data 10-4

Specifying Chart Properties . 10-6
Setting Properties for Individual Charts 10-6
Setting Properties for All Charts in the Model 10-12

Setting the Stateflow Block Update Method 10-15

Implementing Simulink Update Interfaces 10-17
Defining a Triggered Stateflow Block 10-17
Defining a Sampled Stateflow Block 10-18
Defining an Inherited Stateflow Block 10-19
Defining a Continuous Stateflow Block 10-20
Defining Function Call Output Events 10-22
Defining Edge-Triggered Output Events 10-26

Creating Chart Libraries . 10-29

xvii

MATLAB Workspace Interfaces . 10-30
Examining the MATLAB Workspace in MATLAB 10-30
Interfacing the MATLAB Workspace in Stateflow 10-30

Interface to External Sources . 10-31
Exported Events . 10-31
Imported Events . 10-33
Exported Data . 10-35
Imported Data . 10-36

Working with Structures and Bus Signals in
Stateflow

11
About Stateflow Structures . 11-2

Elements of Stateflow Structures . 11-2
What You Can Do with Structures . 11-2
Example of Stateflow Structures . 11-3

Defining Structures in Stateflow . 11-7
Rules for Defining Structure Data Types in Stateflow 11-7
Defining Structure Inputs and Outputs 11-7
Defining Local Structures . 11-12
Defining Temporary Structures . 11-14
Defining Structure Types with Expressions 11-15

Structure Operations . 11-17
Indexing Sub-Structures and Fields 11-17
Assigning Values . 11-19
Getting Addresses . 11-20

Integrating Custom Structures in Stateflow 11-22

Debugging Structures in Stateflow 11-26

xviii Contents

Truth Table Functions

12
What Is a Truth Table? . 12-3

Language Options for Stateflow Truth Tables 12-5
Stateflow Classic Truth Tables . 12-5
Embedded MATLAB Truth Tables . 12-5
Selecting a Language for Stateflow Truth Tables 12-6
Migrating from Stateflow Classic to Embedded MATLAB

Truth Tables . 12-6

Using Truth Tables . 12-7

Building a Simulink Model with a Stateflow Truth
Table . 12-8
Adding a Stateflow Block that Calls a Truth Table

Function . 12-8

Programming a Truth Table . 12-24
Opening a Truth Table for Editing . 12-24
Selecting An Action Language . 12-25
Entering Truth Table Conditions . 12-25
Entering Truth Table Decisions . 12-27
Entering Truth Table Actions . 12-30
Assigning Truth Table Actions to Decisions 12-37
Adding Initial and Final Actions . 12-42

Debugging a Truth Table . 12-45
Checking Truth Tables for Errors . 12-45
Debugging a Truth Table During Simulation 12-46

Correcting Overspecified and Underspecified Truth
Tables . 12-55
Defining an Overspecified Truth Table 12-55
Defining an Underspecified Truth Table 12-56

Model Coverage for Truth Tables . 12-58

How Stateflow Realizes Truth Tables 12-63

xix

Viewing Generated Content . 12-63
How Stateflow Generates Graphical Functions for Truth

Tables . 12-64
How Stateflow Generates Embedded MATLAB Code for

Truth Tables . 12-68

Truth Table Editor Operations . 12-72
Truth Table Editor Reference . 12-72
Searching and Replacing Text in Truth Tables 12-75
Using Row and Column Tooltip Identifiers 12-77

Using Embedded MATLAB Functions

13
Introduction to Embedded MATLAB Functions 13-3

Building a Simulink Model with a Stateflow Embedded
MATLAB Function . 13-5

Programming a Stateflow Embedded MATLAB
Function . 13-11

Debugging a Stateflow Embedded MATLAB
Function . 13-15
Checking Embedded MATLAB Functions for Syntax

Errors . 13-15
Run-Time Debugging for Embedded MATLAB

Functions . 13-17

Model Coverage for an Embedded MATLAB
Function . 13-22
Types of Model Coverage in Embedded MATLAB

Functions . 13-23
Creating a Model with Embedded MATLAB Function

Decisions . 13-23
Understanding Embedded MATLAB Function Model

Coverage . 13-28

xx Contents

Working with Structures and Bus Signals in Stateflow
Embedded MATLAB Functions 13-37
About Structures in Stateflow Embedded MATLAB

Functions . 13-37
Defining Structures in Stateflow Embedded MATLAB

Functions . 13-37

Building Targets

14
Overview of Stateflow Targets . 14-3

What Is a Simulink RTW Target? . 14-3
What Is a Stateflow Target? . 14-3

How Do You Build a Target? . 14-5

How Does Stateflow Build into Targets? 14-7

Adding Stateflow Targets . 14-8
Adding Stateflow Custom Targets . 14-8
Adding Custom Code to Stateflow in Library Models 14-9

Configuring a Simulation Target for Stateflow 14-10

Configuring Real-Time Workshop for Stateflow 14-13
Configuring Stateflow Blocks in Nonlibrary Models for

Real-Time Workshop . 14-13
Configuring Stateflow Blocks in Library Models for

Real-Time Workshop . 14-16

Configuring a Custom Target in Stateflow 14-22

Integrating Custom Code with Stateflow Targets 14-27
Specifying Custom Code Options for Stateflow Targets . . . 14-27
Specifying Relative Paths for Custom Code 14-30
Including Custom C++ Code . 14-31

xxi

Starting the Build . 14-34
Starting a Simulation Target Build 14-34
Starting an RTW Target Build . 14-35

Parsing Stateflow Diagrams . 14-36
Calling the Stateflow Parser . 14-36
Parser Error Checking . 14-37
Parsing Diagram Example . 14-37

Resolving Event, Data, and Function Symbols 14-42
Symbol Autocreation Wizard . 14-42

Error Messages . 14-44
Parser Error Messages . 14-44
Code Generation Error Messages . 14-45
Compilation Error Messages . 14-46

Generated Files . 14-47
S-Function MEX-Files . 14-47
Code Files . 14-48
Makefiles . 14-49

Debugging and Testing

15
Debugging with the Debugging Window 15-3

Setting Breakpoints for Debugging 15-4
Setting Error Checking in the Debugging Window 15-6
Starting Simulation in the Debugging Window 15-7
Controlling Animation in the Debugging Window 15-8
Controlling the Execution Rate in the Debugging

Window . 15-9
Setting the Output Display Pane . 15-10

Debugging Run-Time Errors Example 15-11
Create the Model and Stateflow Diagram 15-11
Debugging the Stateflow Diagram . 15-13
Correcting the Run-Time Error . 15-14

xxii Contents

Debugging State Inconsistencies . 15-16
Causes of State Inconsistency . 15-16
Detecting State Inconsistency . 15-16
State Inconsistency Example . 15-16

Debugging Conflicting Transitions 15-18
Detecting Conflicting Transitions . 15-18
Conflicting Transition Example . 15-18

Debugging Data Range Violations 15-20
Types of Data Range Violations . 15-20
Detecting Data Range Violations . 15-20
Data Range Violation Example . 15-20

Debugging Cyclic Behavior . 15-22
Cyclic Behavior Example . 15-22
Flow Cyclic Behavior Not Detected Example 15-23
Noncyclic Behavior Flagged as a Cyclic Example 15-24

Watching Data Values with Debuggers 15-26
Watching Data in the Stateflow Debugger 15-26
Watching Stateflow Data in MATLAB Command

Window . 15-27

Monitoring Stateflow Test Points 15-32
Setting Test Points for Stateflow States and Local Data

with Model Explorer . 15-32
Logging Data Values and State Activity 15-35
Using a Floating Scope to Monitor Data Values and State

Activity . 15-40

Understanding Model Coverage for Stateflow
Charts . 15-44
Making Model Coverage Reports . 15-45
Specifying Coverage Report Settings 15-45
Cyclomatic Complexity . 15-46
Decision Coverage . 15-46
Condition Coverage . 15-51
MCDC Coverage . 15-51
Coverage Reports for Stateflow Charts 15-51
Colored Stateflow Diagram Coverage Display 15-61

xxiii

Exploring and Modifying Charts

16
Using the Model Explorer with Stateflow Objects 16-2

Viewing Stateflow Objects in the Model Explorer 16-3
Editing States or Charts in the Model Explorer 16-5
Adding Data and Events in the Model Explorer 16-6
Adding a Target in the Model Explorer 16-6
Renaming Objects in the Model Explorer 16-8
Setting Properties for Stateflow Objects in the Model

Explorer . 16-8
Moving and Copying Data, Events, and Targets in the

Model Explorer . 16-9
Changing the Port Order of Input and Output Data and

Events . 16-10
Deleting Data, Events, and Targets in the Model

Explorer . 16-11

Using the Stateflow Search & Replace Tool 16-12
Opening the Search & Replace Tool 16-12
Using Different Search Types . 16-15
Specify the Search Scope . 16-17
Using the Search Button and View Area 16-19
Specifying the Replacement Text . 16-22
Using the Replace Buttons . 16-24
Search and Replace Messages . 16-25

Using the Stateflow Finder Tool . 16-27
Opening Stateflow Finder . 16-27
Using Stateflow Finder . 16-28
Finder Display Area . 16-31

Semantic Rules Summary

A
Entering a Chart . A-2

Executing an Active Chart . A-2

xxiv Contents

Entering a State . A-2

Executing an Active State . A-3

Exiting an Active State . A-3

Executing a Set of Flow Graphs . A-3

Executing an Event Broadcast . A-4

The Stateflow Block

B

The Truth Table Block

C

Glossary

Index

xxv

xxvi Contents

1

Stateflow Concepts

This chapter acquaints you with the concepts involved in defining a finite
state machine and follows this with a look at the hierarchical organization of
Stateflow® objects. Later, it introduces you to a real-world Stateflow example.
The sections in this chapter are as follows:

Finite State Machine Concepts
(p. 1-3)

Stateflow is an example of a
finite state machine. This section
examines what it means to be a
finite state machine and what that
designation requires from Stateflow.

Stateflow and Simulink (p. 1-6) Examines how Stateflow functions
in the Simulink® environment.

Stateflow Diagram Objects (p. 1-10) This section describes most of the
graphical and nongraphical objects
in a Stateflow diagram along with
the concepts that relate them.

1 Stateflow Concepts

Stateflow Hierarchy of Objects
(p. 1-21)

Stateflow supports a containment
hierarchy for both charts and
states. Charts can contain states,
transitions, and the other Stateflow
objects. States can contain other
states, transitions, and so on as if
they were charts themselves. This
containment hierarchy applies to
all Stateflow objects except targets,
which are the sole possession of the
Stateflow machine.

Exploring a Real-World Stateflow
Application (p. 1-24)

The modeling of a real-world
fault-tolerant fuel control system
demonstrates how Simulink and
Stateflow can be used to efficiently
model hybrid systems containing
both continuous dynamics and
complex logical behavior.

1-2

Finite State Machine Concepts

Finite State Machine Concepts
Stateflow is an example of a finite state machine. The following topics
examine what it means to be a finite state machine and what that designation
requires from Stateflow:

• “What Is a Finite State Machine?” on page 1-3

• “Finite State Machine Representations” on page 1-3

• “Stateflow Representations” on page 1-4

• “Notation” on page 1-4

• “Semantics” on page 1-4

• “References” on page 1-5

What Is a Finite State Machine?
A finite state machine is a representation of an event-driven (reactive) system.
In an event-driven system, the system makes a transition from one state
(mode) to another prescribed state, provided that the condition defining the
change is true.

For example, you can use a state machine to represent a car’s automatic
transmission. The transmission has a number of operating states: park,
reverse, neutral, drive, and low. As the driver shifts from one position to
another the system makes a transition from one state to another, for example,
from park to reverse.

Finite State Machine Representations
Traditionally, designers used truth tables to represent relationships among
the inputs, outputs, and states of a finite state machine. The resulting table
describes the logic necessary to control the behavior of the system under
study. Another approach to designing event-driven systems is to model the
behavior of the system by describing it in terms of transitions among states.
The state that is active is determined based on the occurrence of events
under certain conditions. State-transition diagrams and bubble diagrams are
graphical representations based on this approach.

1-3

1 Stateflow Concepts

Stateflow Representations
Stateflow uses a variant of the finite state machine notation established
by Harel [1]. Using Stateflow, you create Stateflow diagrams. A Stateflow
diagram is a graphical representation of a finite state machine, where states
and transitions form the basic building blocks of the system. You can also
represent flow (stateless) diagrams using Stateflow. Stateflow provides a
block that you include in a Simulink model. The collection of Stateflow blocks
in a Simulink model is the Stateflow machine.

Additionally, Stateflow enables the representation of hierarchy, parallelism,
and history. Hierarchy enables you to organize complex systems by defining
a parent/offspring object structure. For example, you can organize states
within other higher-level states. A system with parallelism can have two or
more orthogonal states active at the same time. History provides the means
to specify the destination state of a transition based on historical information.
These characteristics enhance the usefulness of this approach and go beyond
what state-transition diagrams and bubble diagrams provide.

Notation
Notation defines a set of objects and the rules that govern the relationships
between those objects. Stateflow notation provides a common language to
communicate the design information conveyed by a Stateflow diagram.

Stateflow notation consists of the following:

• A set of graphical objects

• A set of nongraphical text-based objects

• Defined relationships between those objects

See Chapter 2, “Stateflow Notation”, for detailed information on Stateflow
notations.

Semantics
Semantics describe how the notation is interpreted and implemented. A
completed Stateflow diagram illustrates how the system will behave. A
Stateflow diagram contains actions associated with transitions and states.

1-4

Finite State Machine Concepts

The semantics describe in what sequence these actions take place during
Stateflow diagram execution.

Knowledge of the semantics is important to make sound Stateflow diagram
design decisions for code generation. Different use of notations results in
different ordering of simulation and generated code execution.

The default semantics provided with the product are described in Chapter 3,
“Stateflow Semantics”.

References
For more information on finite state machine theory, consult these sources:

[1] Harel, David, “Statecharts: A Visual Formalism for Complex Systems,”
Science of Computer Programming 8, 1987, pages 231-274.

[2] Hatley, Derek J., and Imtiaz A. Pirbhai, Strategies for Real-Time System
Specification, Dorset House Publishing Co., Inc., NY, 1988.

1-5

1 Stateflow Concepts

Stateflow and Simulink
Stateflow functions as a finite state machine within a Simulink model. The
following topics examine how Stateflow functions in this environment and
how Simulink and Stateflow communicate with each other:

• “The Simulink Model and the Stateflow Machine” on page 1-6

• “Stateflow Data Dictionary of Objects” on page 1-6

• “Defining Stateflow Interfaces to Simulink” on page 1-8

The Simulink Model and the Stateflow Machine
The Stateflow machine is the collection of Stateflow blocks in a Simulink
model. The Simulink model and Stateflow machine work seamlessly together.
Running a simulation automatically executes both the Simulink and Stateflow
portions of the model.

A Simulink model can consist of combinations of Simulink blocks, toolbox
blocks, and Stateflow blocks (Stateflow diagrams). In Stateflow, the chart
(Stateflow diagram) consists of a set of graphical objects (states, boxes,
functions, notes, transitions, connective junctions, and history junctions) and
nongraphical objects (events, data, and targets).

There is a one-to-one correspondence between the Simulink model and the
Stateflow machine. Each Stateflow block in the Simulink model is represented
in Stateflow by a single chart (Stateflow diagram). Each Stateflow machine
has its own object hierarchy. The Stateflow machine is the highest level in
the Stateflow hierarchy. The object hierarchy beneath the Stateflow machine
consists of combinations of graphical and nongraphical objects.

Stateflow Data Dictionary of Objects
The Stateflow data dictionary is the internal representation for the hierarchy
of all Stateflow objects, graphical and nongraphical, that reside in a Simulink
model. It is represented by the following diagram:

1-6

Stateflow and Simulink

Stateflow scoping rules dictate where different nongraphical objects can
exist in the hierarchy. For example, data and events can be parented by the
machine, the chart (Stateflow diagram), or by a state. Targets can only be
parented by the machine. Once a parent is chosen, that object is known in the
hierarchy from the parent downward (including the parent’s offspring). For

1-7

1 Stateflow Concepts

example, a data object parented by the machine is accessible by that machine,
by any charts within that machine, and by any states within that machine.

The hierarchy of the graphical objects is easily and automatically handled
for you by the graphics editor. You manage the hierarchy of nongraphical
objects through the Explorer or the graphics editor Add menu. See “Stateflow
Hierarchy of Objects” on page 1-21.

Defining Stateflow Interfaces to Simulink
Each Stateflow block corresponds to a single Stateflow diagram. The Stateflow
block interfaces to its Simulink model. The Stateflow block can interface to
code sources external to the Simulink model (data, events, custom code).

Stateflow diagrams are event driven. Events can be local to the Stateflow
block or can be propagated to and from Simulink and code sources external to
Simulink. Data can be local to the Stateflow block or can be shared with and
passed to the Simulink model and to code sources external to the Simulink
model.

You must define the interface to each Stateflow block. Defining the interface
for a Stateflow block can involve some or all of these tasks:

• Defining the Stateflow block update method

• Defining Output to Simulink events

• Adding and defining nonlocal events and nonlocal data within the Stateflow
diagram

• Defining relationships with any external sources

In the following example, the Simulink model titled sf_intro_example
consists of a Simulink Sine Wave source block, a Simulink Scope sink block,
and a single Stateflow block, titled On_off.

1-8

Stateflow and Simulink

See “Defining Input Events” on page 7-13 and Chapter 10, “Defining
Interfaces to Simulink and MATLAB” for more information.

1-9

1 Stateflow Concepts

Stateflow Diagram Objects
Stateflow diagrams are made of objects. Some of these objects graphical,
that is, you draw them in a Stateflow diagram. Some of these objects are
nongraphical, that is, they do not have a graphical appearance, but are
referred to in the Stateflow diagram.

The following sample Stateflow diagram displays some of the key graphical
objects of a Stateflow diagram.

Stateflow Diagram of Graphical Objects

This section introduces you to the graphical and nongraphical objects in a
Stateflow diagram in the following topics:

1-10

Stateflow Diagram Objects

• “States” on page 1-11

• “Transitions” on page 1-13

• “Default Transitions” on page 1-14

• “Events” on page 1-15

• “Data” on page 1-15

• “Conditions” on page 1-16

• “History Junction” on page 1-16

• “Actions” on page 1-17

• “Connective Junctions” on page 1-19

All Stateflow objects are arranged in a hierarchy of objects. See “Stateflow
Hierarchy of Objects” on page 1-21.

States
A state describes a mode of an event-driven system. The activity or inactivity
of the states dynamically changes based on events and conditions.

Every state has a parent. In a Stateflow diagram consisting of a single state,
that state’s parent is the Stateflow diagram itself (also called the Stateflow
diagram root). You can place states within other higher-level states. In the
preceding figure, StateA1 is a child of StateA.

A state can have its activity history recorded in a history junction. History
provides an efficient means of basing future activity on past activity. See
“History Junction” on page 1-16.

States have labels that can specify actions executed in a sequence based upon
action type. The action types are entry, during, exit, and on. See “Actions”
on page 1-17.

The decomposition of a state defines the kind of state that a state can contain
and the next level of containment. Stateflow provides two types of states:
exclusive (OR) and parallel (AND) states. Exclusive (OR) states are used to
describe modes that are mutually exclusive. A chart or state that contains

1-11

1 Stateflow Concepts

exclusive (OR) states is said to have exclusive decomposition. The following
transmission example has exclusive (OR) states.

An automatic transmission can be set to either neutral or engaged. In this
example either the neutral state or the engaged state is active at any one
time. Both cannot be active at the same time.

A chart or state with parallel states has two or more states that can be active
at the same time. A chart or state that contains parallel (AND) states is
said to have parallel decomposition.

Parallel (AND) states are displayed as dashed rectangles. The activity of each
parallel state is essentially independent of other states. In the diagram in
Stateflow Diagram of Graphical Objects on page 1-10, StateA2 has parallel
(AND) state decomposition. Its states, StateA2a and StateA2b, are parallel
(AND) states.

The following Stateflow diagram has parallel superstate decomposition.

1-12

Stateflow Diagram Objects

In this example, the transmission, heating, and light systems are parallel
subsystems in a car. They are active at the same time and are physically
independent of each other. There are many other parallel components in a car,
such as the braking and windshield wiper subsystems.

Transitions
A transition is a graphical object that, in most cases, links one object to
another. One end of a transition is attached to a source object and the other
end to a destination object. The source is where the transition begins and
the destination is where the transition ends. A transition label describes
the circumstances under which the system moves from one state to another.
It is always the occurrence of some event that causes a transition to take
place. In the diagram in Stateflow Diagram of Graphical Objects on page
1-10, the transition from StateA1 to StateA2 is labeled with the event
transitionA1_A2 that triggers the transition to occur.

Consider again the automatic transmission system. clutch_engaged is the
event required to trigger the transition from neutral to engaged.

1-13

1 Stateflow Concepts

Default Transitions
Default transitions specify which exclusive (OR) state is to be active when
there is ambiguity between two or more exclusive (OR) states at the same
level in the hierarchy.

For example, in the diagram in Stateflow Diagram of Graphical Objects on
page 1-10, the default transition to StateA1 resolves the ambiguity that exists
with regard to whether StateA1 or StateA2 should be active when State
A becomes active. In this case, when StateA is active, by default StateA1
is also active.

In the following Lights subsystem, the default transition to the Lights.Off
substate indicates that when the Lights superstate becomes active, the Off
substate becomes active by default.

Note History junctions override default transition paths in superstates with
exclusive (OR) decomposition. In parallel (AND) states, a default transition
must always be present to indicate which of its exclusive (OR) states is active
when the parallel state becomes active.

1-14

Stateflow Diagram Objects

Events
Events drive the Stateflow diagram execution but are nongraphical objects
and are thus not represented directly in a Stateflow chart. All events that
affect the Stateflow diagram must be defined. The occurrence of an event
causes the status of the states in the Stateflow diagram to be evaluated. The
broadcast of an event can trigger a transition to occur or can trigger an action
to be executed. Events are broadcast in a top-down manner starting from
the event’s parent in the hierarchy.

Events are created and modified using the Stateflow Explorer. Events can be
created at any level in the hierarchy. Events have properties such as a scope.
The scope defines whether the event is

• Local to the Stateflow diagram

• An input to the Stateflow diagram from its Simulink model

• An output from the Stateflow diagram to its Simulink model

• Exported to a (code) destination external to the Stateflow diagram and
Simulink model

• Imported from a code source external to the Stateflow diagram and
Simulink model

Data
Data objects are used to store numerical values for reference in the Stateflow
diagram. They are nongraphical objects and are thus not represented directly
in a Stateflow chart.

You create and modify data objects for Stateflow diagrams in Stateflow
Explorer. Data objects have a property called scope that defines whether
the data object is

• Local to the Stateflow diagram

• An input to the Stateflow diagram from its Simulink model

• An output from the Stateflow diagram to its Simulink model

• Nonpersistent temporary data

• Defined in the MATLAB® workspace

1-15

1 Stateflow Concepts

• A constant

• Exported to a (code) destination external to the Stateflow diagram and
Simulink model

• Imported from a code source external to the Stateflow diagram and
Simulink model

Conditions
A condition is a Boolean expression specifying that a transition occurs, given
that the specified expression is true. In the component summary Stateflow
diagram, [condition1] represents a Boolean expression that must be true
for the transition to occur.

In the automatic transmission system, the transition from first to second
occurs if the transition condition [speed > threshold] is true.

History Junction
A history junction records the most recently active state of a chart or
superstate.

If a superstate with exclusive (OR) decomposition has a history junction, the
destination substate is defined to be the substate that was most recently
visited. A history junction applies to the level of the hierarchy in which
it appears. The history junction overrides any default transitions. In the
component summary Stateflow diagram, the history junction in StateA1
indicates that when a transition to StateA1 occurs, the substate that

1-16

Stateflow Diagram Objects

becomes active (StateA1a, StateA1b, or StateA1c) is based on which of those
substates was most recently active.

In the automatic transmission system, history indicates that when
clutch_engaged causes a transition from neutral to the engaged superstate,
the substate that becomes active, either first or second, is based on which of
those substates was most recently active.

Actions
Actions take place as part of Stateflow diagram execution. The action can be
executed either as part of a transition from one state to another or based on
the activity status of a state.

Transitions ending in a state can have condition actions and transition
actions, as shown in the following example:

1-17

1 Stateflow Concepts

In the diagram in Stateflow Diagram of Graphical Objects on page 1-10,
the transition segment from StateA1b to the connective junction is labeled
with the condition action func1() and the transition action func2(). The
semantics of how and why actions take place are discussed throughout the
examples listed in “Semantic Examples” on page 3-42.

States can have entry, during, exit, and on event_name actions. For
example,

Action language defines the types of actions you can specify and their
associated notations. An action can be a function call, the broadcast of an
event, the assignment of a value to a variable, and so on.

Stateflow supports both Mealy and Moore finite state machine modeling
paradigms. In the Mealy model, actions are associated with transitions,
whereas in the Moore model they are associated with states. For more
information, see Chapter 5, “Building Mealy and Moore Charts in Stateflow”.

Stateflow supports state actions, transition actions, and condition actions. For
more information, see the following:

• “State Labels” on page 2-9 — Describes action language for states, which
is included in the label for a state

• “Transition Label Notation” on page 2-15 — Describes action language for
transitions which is included in the label of a transition.

• “Labeling States” on page 4-11 — Shows you to label states with its name
and actions in the Stateflow diagram editor.

• “Labeling Transitions” on page 4-17 — Shows you how to label transitions
with actions in the Stateflow diagram editor.

1-18

Stateflow Diagram Objects

Connective Junctions
Connective junctions are decision points in the system. A connective junction
is a graphical object that simplifies Stateflow diagram representations
and facilitates generation of efficient code. Connective junctions provide
alternative ways to represent desired system behavior. In the diagram in
“Stateflow Diagram Objects” on page 1-10, the connective junction is used as
a decision point for two transition segments that complete at StateA1c.

Transitions connected to junctions are called transition segments. Transitions,
apart from default transitions, must go state to state. However, once
the transition segments taken complete a state to state transition, the
accumulation of the transition segments taken forms a complete transition.

The following example shows how connective junctions (displayed as small
circles) are used to represent the flow of an if-else code structure shown in
accompanying pseudocode.

This example executes as follows:

1 If condition [c1] is true, condition action a1 is executed and the default
transition to the top junction is taken.

2 Stateflow now considers which transition segment to take out of the top
junction (it can take only one). Junctions with conditions have priority over
junctions without conditions, so the transition with the condition [c2] is
considered first.

1-19

1 Stateflow Concepts

3 If condition [c2] is true, action a2 is executed and the transition segment
to the bottom junction is taken. Because there are no outgoing transition
segments from the bottom junction, the diagram is finished executing.

4 If condition [c2] is false, the empty transition segment on the right is
taken (because it has no condition at all).

5 If condition [c3] is true, condition action a3 is executed and the transition
segment from the middle to the bottom junction is taken. Because there
are no outgoing transition segments from the bottom junction, the diagram
is finished executing.

6 If condition [c3] is false, execution is finished at the middle junction.

The above steps describe the execution of the example diagram for connective
junctions with Stateflow semantics. Stateflow semantics describe how objects
in diagrams relate to each other during execution. See Chapter 3, “Stateflow
Semantics”.

1-20

Stateflow Hierarchy of Objects

Stateflow Hierarchy of Objects
Stateflow diagrams arrange Stateflow objects in a hierarchy of objects. This
hierarchy is based on containment. That is, one Stateflow object can contain
other Stateflow objects.

The object hierarchy for all Stateflow objects in a Simulink model is referred
to as the Stateflow Data Dictionary. This dictionary defines which objects a
particular object can contain in a Stateflow diagram. The Stateflow Data
Dictionary is depicted in the following diagram.

The highest object in Stateflow hierarchy is the Stateflow machine. It is
defined as an object that contains all other Stateflow objects in a Simulink
model. This means that the Stateflow machine contains all the Stateflow

1-21

1 Stateflow Concepts

charts (diagrams) in a Simulink model. In addition, the Stateflow machine
for a model can also contain its own data, event, and target objects. Only a
simulation target (named sfun) is added to the Stateflow machine by default
when the model is created. All other data, event, and target objects must be
added to the machine.

Similarly, charts can contain state, box, function, data, event, transition,
junction, and note events. You use all of these objects to create a Stateflow
diagram. Continuing with the Stateflow hierarchy, states can contain all
of these objects as well, including other states. Stateflow represents state
hierarchy with superstates and substates. For example, this Stateflow
diagram has a superstate that contains two substates.

In the preceding Stateflow diagram, the engaged superstate contains the
first and second substates. The engaged superstate is the parent in the
hierarchy to the states first and second. When the event clutch_engaged
occurs, the system transitions out of the neutral state to the engaged
superstate. Transitions within the engaged superstate are intentionally
omitted from this example for simplicity.

A transition out of a superstate implies transitions out of any of its active
substates. Transitions can cross superstate boundaries to specify a substate
destination. If a substate is made active its parent superstate is also made
active.

1-22

Stateflow Hierarchy of Objects

The Stateflow hierarchy of objects lets you organize complex Stateflow
diagrams by defining a containment structure. A hierarchical design usually
reduces the number of transitions and produces neat, manageable diagrams.
Stateflow supports a hierarchical organization of both charts and states.

1-23

1 Stateflow Concepts

Exploring a Real-World Stateflow Application
The modeling of a fault-tolerant fuel control system demonstrates how
Simulink and Stateflow can be used to efficiently model hybrid systems
containing both continuous dynamics and complex logical behavior.

Simulink elements model behavior based on a given sample time. Each loop
of its block diagram is assigned an increment of sample time. Stateflow
execution makes no consideration for sample time. Internally, its application
might take many cycles of execution, which are assumed to take place during
the sample time assigned in Simulink.

The model described represents a fuel control system for a gasoline engine.
This robust control system reacts to the detection of individual sensor failures
and is dynamically reconfigured for uninterrupted operation. This section
describes how Stateflow is used to implement supervisory logic control system
to deal with the sensor failures and contains the following topics:

• “Overview of the "fuel rate controller" Model” on page 1-24

• “Control Logic of the "fuel rate controller" Model” on page 1-28

• “Simulating the "fuel rate controller" Model” on page 1-30

Overview of the "fuel rate controller" Model
The mass flow rate of air pumped from the intake manifold, divided by the
fuel rate, which is injected at the valves, gives the air/fuel ratio. The ideal
mixture ratio provides a good compromise between power, fuel economy, and
emissions. A target air/fuel ratio of 14.6 is assumed in this system.

A sensor (EGO) determines the amount of residual oxygen present in the
exhaust gas. This gives a good indication of the air/fuel ratio and provides
a feedback measurement for closed-loop control. If the sensor indicates a
high oxygen level, the controller increases the fuel rate. If the sensor detects
a fuel-rich mixture (corresponding to a very low level of residual oxygen),
the controller decreases the fuel rate.

The following figure shows the top level of the Simulink model (fuelsys.mdl).
The model is modularized into a fuel rate controller and a subsystem to
simulate engine gas dynamics.

1-24

Exploring a Real-World Stateflow Application

1-25

1 Stateflow Concepts

The fuel rate controller uses signals from the system’s sensors to determine
the fuel rate that gives an ideal mixture. The fuel rate combines with the
actual air flow in the engine gas dynamics model to determine the resulting
mixture ratio as sensed at the exhaust.

To simulate failures in the system, the user can selectively disable each of the
four sensors: throttle angle, speed, exhaust gas (EGO), and manifold absolute
pressure (MAP). Simulink accomplishes this with Manual Switch blocks. The
user can toggle the position of a switch by double-clicking its icon prior to or
during a simulation. Similarly, the user can induce the failure condition of a
high engine speed by toggling the switch on the far left.

The controller uses the sensor input and feedback signals to adjust the fuel
rate to provide an ideal ratio. The model uses four subsystems to implement
this strategy: control logic, sensor correction, airflow calculation, and fuel
calculation. Under normal operation, the model estimates the airflow rate
and multiplies the estimate by the reciprocal of the desired ratio to give the
fuel rate. Feedback from the oxygen sensor provides a closed-loop adjustment
of the rate estimation in order to maintain the ideal mixture ratio.

1-26

Exploring a Real-World Stateflow Application

A detailed explanation of the Simulink part of the fault-tolerant control
system is given in Using Simulink and Stateflow in Automotive Applications,
a Simulink-Stateflow Technical Examples booklet published by The
MathWorks. This section concentrates on the supervisory logic part of the
system that is implemented in Stateflow, but the following points are crucial
to the interaction between Simulink and Stateflow:

• The supervisory logic monitors the input data readings from the sensors.

• The logic determines from these readings the sensors that have failed and
outputs a failure state Boolean array as fail_state.

• Given the current failure state, the logic determines in which fueling mode
the engine should be run.

1-27

1 Stateflow Concepts

The fueling mode can be one of the following modes:

• Low emissions mode is the normal mode of operation where no sensors
have failed.

• Rich mixture mode occurs when a sensor has failed, to ensure smooth
running of the engine.

• Shutdown mode occurs when more than one sensor has failed, rendering
the engine inoperable.

The fueling mode and failure state are output from Stateflow as fuel_mode
and fail_state respectively into the algorithmic part of the model, where
they determine the fueling calculations.

Control Logic of the "fuel rate controller" Model
The single Stateflow chart that implements the entire control logic for the
fuelsys model is shown in the following diagram:

1-28

Exploring a Real-World Stateflow Application

The chart consists of six parallel states with dashed boundaries that represent
concurrent modes of operation.

The four parallel states at the top of the diagram correspond to the four
individual sensors. Each of these states has a substate that represents the
functioning or failing status of that sensor. These substates are mutually
exclusive. For example, if the throttle sensor fails then the lone active
substate of the Throttle_Sensor_Mode state is throt_fail.

1-29

1 Stateflow Concepts

Transitions determine how states can change and can be guarded by
conditions. For example, the active state can change from the throt_norm
state to the throt_fail state when the measurement from the throttle sensor
exceeds max_throt or is below min_throt.

The remaining two parallel states at the bottom consider the status of the four
sensors simultaneously and determine the overall system operating mode.
The Sens_Failure_Counter superstate acts as a store for the resultant
number of sensor failures. This state is polled by the Fueling_Mode state that
determines the fueling mode of the engine. If a single sensor fails, operation
continues but the air/fuel mixture is richer to allow smoother running at the
cost of higher emissions. If more than one sensor has failed, the engine shuts
down as a safety measure, because the air/fuel ratio cannot be controlled
reliably.

Although it is possible to run Stateflow charts asynchronously by injecting
events from Simulink when required, the fueling control logic is polled
synchronously at a rate of 100 Hz. Consequently, the sensors are checked
every 1/100 second to see if they have changed status, and the fueling mode is
adjusted accordingly.

Simulating the "fuel rate controller" Model
On starting the simulation, and assuming no sensors have failed, the
Stateflow diagram initializes in the Warmup mode in which the oxygen sensor
is deemed to be in a warm-up phase. If Stateflow is placed into animation
mode, the current state of the system can clearly be seen highlighted on the
Stateflow diagram, as shown.

1-30

Exploring a Real-World Stateflow Application

After a given time period, defined by o2_t_thresh, the sensor is deemed to
have reached operating temperature and the system settles into the normal
mode of operation, shown above, in which the fueling mode is set to NORMAL.

As the simulation progresses, the chart is woken up synchronously every 0.01
second. The events and conditions that guard the transitions are evaluated
and if a transition is valid, it is taken and animated on the Stateflow diagram.

To illustrate this, you can provoke a transition by switching one of the sensors
to a failure value on the top-level Simulink model. The system detects throttle

1-31

1 Stateflow Concepts

and pressure sensor failures when their measured values fall outside their
nominal ranges. A manifold vacuum in the absence of a speed signal indicates
a speed sensor failure. The oxygen sensor also has a nominal range for failure
conditions but, because zero is both the minimum signal level and the bottom
of the range, failure can be detected only when it exceeds the upper limit.

Switch the Simulink switch for the manifold air pressure sensor to the off
position to witness the following sequence of transitions (note the diagram
that follows).

1 Switching the Simulink manifold air pressure sensor switch causes a value
of zero to be read by the fuel rate controller.

2 When the chart is next woken up, the transition from the press_norm state
becomes valid as the reading is now out of bounds and the transition is
taken to the press_fail state, as shown.

3 Regardless of which sensor fails, the model always generates the directed
event broadcast Sens_Failure_Counter.INC, which makes the triggering
of the universal sensor failure logic independent of the sensor.

This event causes a second transition from FL0 to FL1 in the
Sens_Failure_Counter superstate. Both transitions are animated on the
Stateflow diagram.

4 With the Sens_Failure_Counter state showing one failure, the condition
that guards the transition from the Low_Emissions.Normal state to the
Rich_Mixture.Single_Failure state is now valid and is therefore taken.

5 As the Fuel_Disabled state is entered, the data fuel_mode is set to RICH,
as shown.

The transitions taken in the preceding steps are depicted in the following
simulation diagram. Step numbers appear next to the dashed indicator line.

1-32

Exploring a Real-World Stateflow Application

A second sensor failure causes the Sens_Failure_Counter to enter the
Multifail state, broadcasting an implicit event that immediately triggers
the transition from the Running state to the Shutdown state. On entering the
Fuel_Disabled superstate the Stateflow data fuel_mode is set to DISABLED.

1-33

1 Stateflow Concepts

Implicit Event Broadcasts
The preceding example shows how the control logic can be represented
in a clear and intuitive manner. The Stateflow diagram (or chart) has
been developed in a way that allows the user, or a reviewer, to easily
understand how the logic is structured. Implicit event broadcasts (such as
enter(multifail)) and implicit conditions (in(FL0)) make the diagram easy
to read and the generated code more efficient.

1-34

Exploring a Real-World Stateflow Application

Modifying the Model
To illustrate how easy it is to modify the model, consider the Warmup fueling
state in the fuel control logic. At the moment the fueling is set to the low
emissions mode (note the highlighted default transition at the bottom).

You might decide that when the oxygen sensor is warming up, changing the
warm-up fueling mode to a rich mixture would be beneficial. In the Stateflow
chart you can easily achieve this by changing the parent of the Warmup state to
the Rich_Mixture state. This is accomplished by enlarging the Rich_Mixture
state and moving the Warmup state into it from the Low_Emissions state. This
alteration is obvious to all who need to inspect or maintain the code as shown
in the following result (note the highlighted default transition at the bottom):

The results of changing the algorithm can be seen in the following graphs
of air/fuel mixture ratio for the first few seconds of engine operation after
startup. The left graph shows the air/fuel ratio for the unaltered system. The
right graph for the altered system shows how the air/fuel ratio stays low in
the warming up phase indicating a rich mixture.

1-35

1 Stateflow Concepts

1-36

2

Stateflow Notation

You compose Stateflow diagrams with the symbolic objects of Stateflow
notation. Learning Stateflow notation is the first step to designing and
implementing efficient Stateflow diagrams. Use the following sections to
introduce yourself to the objects of Stateflow diagrams:

Overview of Stateflow Objects
(p. 2-3)

Stateflow contains objects that are
graphical and nongraphical that
are organized into an hierarchical
structure.

States (p. 2-6) States are the primary objects of
Stateflow. They represent modes of
a system.

Transitions (p. 2-13) A transition is a pathway for a chart
or state to change from one mode
(state) to another.

Transition Connections (p. 2-18) Stateflow supports a wide variety
of connections with other Stateflow
objects.

Default Transitions (p. 2-26) Default transitions tell Stateflow
which of several possible states to
enter first for a chart or superstate.

Connective Junctions (p. 2-31) A connective junction represents a
decision point between alternative
transition paths.

History Junctions (p. 2-38) A history junction records the most
recently active state of the chart or
superstate in which it is placed.

2 Stateflow Notation

Boxes (p. 2-40) You use boxes to group parts of a
diagram.

Graphical Functions (p. 2-41) For convenience, Stateflow provides
functions that are graphically
defined by a flow graph.

2-2

Overview of Stateflow Objects

Overview of Stateflow Objects
This section describes the different types of available Stateflow objects. Its
topics are as follows:

• “Graphical Objects” on page 2-3

• “Nongraphical Objects” on page 2-4

• “The Stateflow Data Dictionary of Objects” on page 2-5

While this chapter defines most of these relationships, they are dealt with in
more detail in Chapter 3, “Stateflow Semantics” which describes the behavior
of Stateflow charts.

Graphical Objects
The following table gives the name of each graphical object in Stateflow, its
appearance when drawn in the diagram editor (Notation), and the toolbar icon
used in drawing the object:

Name Notation Toolbar Icon

State

Transition NA

History Junction

Default Transition

Connective Junction

2-3

2 Stateflow Notation

Name Notation Toolbar Icon

Truth Table Function

Graphical Function

Embedded MATLAB
Function

Box

Nongraphical Objects
Stateflow defines event, data, and target objects that do not have graphical
representations in the Stateflow diagram editor. However, you can see them
in the Stateflow Explorer. See “Using the Model Explorer with Stateflow
Objects” on page 16-2.

Event Objects
An event is a Stateflow object that can trigger a whole Stateflow chart or
individual actions in a chart. Because Stateflow charts execute by reacting
to events, you specify and program events into your charts to control their
execution. You can broadcast events to every object in the scope of the object
sending the event, or you can send an event to a specific object. You can define
explicit events that you specify directly, or you can define implicit events to
take place when certain actions are performed, such as entering a state. For a
full description of events, see “Adding Events” on page 7-4.

Data Objects
A Stateflow chart stores and retrieves data that it uses to control its execution.
Stateflow data resides in its own workspace, but you can also access data
that resides externally in the Simulink model or application that embeds the

2-4

Overview of Stateflow Objects

Stateflow machine. When creating a Stateflow model, you must define any
internal or external data that you use in the action language of a Stateflow
chart. For a full description of data objects, see “Adding Data” on page 7-27.

Target Objects
You build targets in Stateflow to execute the application you program in
Stateflow charts and the Simulink model that contains them. A target is a
program that executes a Stateflow model or a Simulink model containing a
Stateflow machine. You build a simulation target (named sfun) to execute a
simulation of your model. You build a Real-Time Workshop® target (named
rtw) to execute the Simulink model on a supported processor environment.
You build custom targets (with names other than sfun or rtw) to pinpoint your
application to a specific environment. For a full description of target objects in
Stateflow and Simulink, see “Overview of Stateflow Targets” on page 14-3.

The Stateflow Data Dictionary of Objects
The data dictionary is a database containing all the information about the
graphical and nongraphical objects. Data dictionary entries for graphical
objects are created automatically as the objects are added and labeled. You
explicitly define nongraphical objects in the data dictionary by using the
Stateflow Explorer. The parser evaluates entries and relationships between
entries in the data dictionary to verify that the notation is correct.

2-5

2 Stateflow Notation

States
This topic describes Stateflow’s primary object, the state. States represent
modes of a reactive system. See the following topics for information about
states and their properties:

• “What Is a State?” on page 2-6

• “State Hierarchy” on page 2-6

• “State Decomposition” on page 2-8

• “State Labels” on page 2-9

What Is a State?
A state describes a mode of a reactive Stateflow chart. States in a Stateflow
chart represent these modes. The following table shows the button icon for a
drawing a state in the Stateflow diagram editor and a short description.

Name Button Icon Description

State Use a state to depict a mode of the system.

States can be active or inactive. When a state is active, the chart takes on that
mode. When a state is inactive, the chart is not in that mode. The activity
or inactivity of a chart’s states dynamically changes based on events and
conditions. The occurrence of events drives the execution of the Stateflow
diagram by making states become active or inactive. At any point in the
execution of a Stateflow diagram, there is a combination of active and inactive
states.

State Hierarchy
States can contain all other Stateflow objects except targets. Stateflow
notation supports the representation of graphical object hierarchy in
Stateflow diagrams with containment. A state is a superstate if it contains
other states. A state is a substate if it is contained by another state. A state
that is neither a superstate nor a substate of another state is a state whose
parent is the Stateflow diagram itself.

2-6

States

States can also contain nongraphical data and event objects. The hierarchy
of this containment is represented in the Explorer tool. Data and event
containment is defined by specifying the parent object when you create it. See
Chapter 7, “Defining Events and Data” and Chapter 10, “Defining Interfaces
to Simulink and MATLAB” for information and examples on representing
data and event objects in the Explorer tool.

Representing State Hierarchy Example
In the following example, drawing one state within the boundaries of another
state indicates that the inner state is a substate or child of the outer state or
superstate and the outer state is the parent of the inner state:

In this example, the Stateflow diagram is the parent of the state Car_done.
The state Car_done is the parent state of the Car_made and Car_shipped
states. The state Car_made is also the parent of the Parts_assembled and
Painted states. You can also say that the states Parts_assembled and
Painted are children of the Car_made state.

Stateflow hierarchy can also be represented textually, in which the Stateflow
diagram is represented by the slash (/) character and each level in the
hierarchy of states is separated by the period (.) character. The following is a
textual representation of the hierarchy of objects in the preceding example:

• /Car_done

• /Car_done.Car_made

2-7

2 Stateflow Notation

• /Car_done.Car_shipped

• /Car_done.Car_made.Parts_assembled

• /Car_done.Car_made.Painted

State Decomposition
Every state (and chart) has a decomposition that dictates what kind of
substates it can contain. All substates of a superstate must be of the same
type as the superstate’s decomposition. Decomposition for a state can be
exclusive (OR) or parallel (AND). These types of decomposition are described
in the following topics:

• “Exclusive (OR) State Decomposition” on page 2-8

• “Parallel (AND) State Decomposition” on page 2-8

Exclusive (OR) State Decomposition
Exclusive (OR) state decomposition for a superstate (or chart) is indicated
when its substates have solid borders. Exclusive (OR) decomposition is used
to describe system modes that are mutually exclusive. When a state has
exclusive (OR) decomposition, only one substate can be active at a time. The
children of exclusive (OR) decomposition parents are OR states.

In the following example, either state A or state B can be active. If state A is
active, either state A1 or state A2 can be active at any one time.

Parallel (AND) State Decomposition
The children of parallel (AND) decomposition parents are parallel (AND)
states. Parallel (AND) state decomposition for a superstate (or chart) is
indicated when its substates have dashed borders. This representation is

2-8

States

appropriate if all states at that same level in the hierarchy are always active
at the same time.

In the following example, when state A is active, A1 and A2 are both active
at the same time:

The activity within parallel states is essentially independent, as demonstrated
in the following example.

In the following example, when state A becomes active, both states B and C
become active at the same time. When state C becomes active, either state
C1 or state C2 can be active.

State Labels
The label for a state appears on the top left corner of the state rectangle with
the following general format:

name/
entry:entry actions
during:during actions
exit:exit actions
bind:events, data
on event_name:on event_name actions

2-9

2 Stateflow Notation

The following example demonstrates the components of a state label.

Each of the above actions is described in the subtopics that follow. For more
information on state actions, see the following topics:

• “Entering, Executing, and Exiting a State” on page 3-21 — Describes how
and when entry, during, exit, and on event_name actions are taken.

• “State Action Types” on page 8-3— Gives more detailed descriptions of each
type of state action.

State Name
A state label starts with the name of the state followed by an optional
/ character. In the preceding example, the state names are On and Off.
Valid state names consist of alphanumeric characters and can include the
underscore (_) character, for example, Transmission or Green_on.

The use of hierarchy provides some flexibility in the naming of states. The
name that you enter as part of the label must be unique when preceded by
the hierarchy of its ancestor states. The name stored in the data dictionary
is the text you enter as the label on the state, preceded by the hierarchy of
its parent states separated by periods. Each state can have the same name
appear in the label of the state, as long as their full names within the data
dictionary are unique. Otherwise, the parser indicates an error.

2-10

States

The following example shows how hierarchy supports unique naming of states.

Each of these states has a unique name because of its location in the hierarchy
of the Stateflow diagram. Although the name portion of the label on these
states is not unique, when the hierarchy is prefixed to the name in the data
dictionary, the result is unique. The full names for these states as seen in
the data dictionary are as follows:

• Ride1.On

• Ride1.Off

• Ride2.On

• Ride2.Off

State Actions
After the name, you enter optional action statements for the state with a
keyword label that identifies the type of action. You can specify none, some, or
all of them. The colon after each keyword is required. The slash following the
state name is optional as long as it is followed by a carriage return.

For each type of action, you can enter more than one action by separating
each action with a carriage return, semicolon, or a comma. You can specify
actions for more than one event by adding additional on event_name lines for
different events.

If you enter the name and slash followed directly by actions, the actions
are interpreted as entry action(s). This shorthand is useful if you are only
specifying entry actions.

2-11

2 Stateflow Notation

Entry Action. Preceded by the prefix entry or en for short. In the preceding
example, state On has entry action on_count=0. This means that the value of
on_count is reset to 0 whenever state On becomes active (entered).

During Action. Preceded by the prefix during or du for short. In the
preceding label example, state On has two during actions, light_on() and
on_count++. These actions are executed whenever state On is already
active and any event occurs.

Exit Action. Preceded by the prefix exit or ex for short. In the preceding
label example, state Off has the exit action light_off(). If the state Off is
active, but becomes inactive (exited), this action is executed.

On Event_Name Action. Preceded by the prefix on event_name, where
event_name is a unique event. In the preceding label example, state On has an
on power_outage action. If state On is active and the event power_outage
occurs, the action handle_outage() is executed.

Bind Action. Preceded by the prefix bind. In the preceding label example, the
data on_count is bound to the state On. This means that only the state On or a
child of On can change the value of on_count. Other states, such as the state
Off, can use on_count in its actions, but it cannot change its value in doing so.

2-12

Transitions

Transitions
You model the behavior of reactive systems by changing from one state to
another through an object called a transition. This section contains the
following topics on the transitions in Stateflow diagrams:

• “What Is a Transition?” on page 2-13

• “Transition Hierarchy” on page 2-14

• “Transition Label Notation” on page 2-15

• “Valid Transitions” on page 2-16

What Is a Transition?
A transition is a curved line with an arrowhead that links one graphical object
to another. In most cases, a transition represents the passage of the system
from one mode (state) object to another. A transition is attached to a source
and a destination object. The source object is where the transition begins and
the destination object is where the transition ends. This is an example of a
transition from a source state, On, to a destination state, Off.

Junctions divide a transition into transition segments. In this case, a full
transition consists of the segments taken from the origin to the destination
state. Each segment is evaluated in the process of determining the validity of
a full transition.

The following example has two segmented transitions: one from state On to
state Off, and the other from state On to itself:

2-13

2 Stateflow Notation

A default transition is a special type of transition that has no source object.
See “Default Transitions” on page 2-26 for a description of a default transition.

Transition Hierarchy
Transitions cannot contain other objects like states can. However, transitions
are contained by states. A transition’s hierarchy is described in terms of the
transition’s parent, source, and destination. The parent is the lowest level
that contains the source and destination of the transition. Consider the
parents for the transitions in the following example:

The following table resolves the parentage of each transition in the preceding
example. The Stateflow diagram is represented by the / character. Each level
in the hierarchy of states is separated by the period (.) character.

2-14

Transitions

Transition Label Transition Parent Transition Source
Transition
Destination

switch_off / /Power_on.Low.Heat /Power_off

switch_high /Power_on /Power_on.Low.Heat /Power_on.High

switch_cold /Power_on.Low /Power_on.Low.Heat /Power_on.Low.Cold

Transition Label Notation
A transition is characterized by its label. The label can consist of an event, a
condition, a condition action, and/or a transition action. The ? character is the
default transition label. Transition labels have the following general format:

event[condition]{condition_action}/transition_action

You replace the names for event, condition, condition_action, and
transition_action with appropriate contents as shown in the example
“Transition Label Example” on page 2-15. Each part of the label is optional.

Transition Label Example
Use the transition label in the following example to understand the parts
of a transition label.

2-15

2 Stateflow Notation

Event Trigger. specifies an event that causes the transition to be taken,
provided the condition, if specified, is true. Specifying an event is optional.
The absence of an event indicates that the transition is taken upon the
occurrence of any event. Multiple events are specified using the OR logical
operator (|).

In the preceding example, the broadcast of event E triggers the transition
from On to Off provided the condition [off_count==0] is true.

Condition. specifies a boolean expression that, when true, validates a
transition to be taken for the specified event trigger. Enclose the condition
in square brackets ([]). See “Conditions” on page 8-8 for information on the
condition notation.

In the preceding example, the condition [off_count==0] must evaluate as
true for the condition action to be executed and for the transition from the
source to the destination to be valid.

Condition Action. A condition action follows the condition for a transition
and is enclosed in curly braces ({}). It is executed as soon as the condition is
evaluated as true and before the transition destination has been determined
to be valid. If no condition is specified, an implied condition evaluates to true
and the condition action is executed.

In the preceding example, if the condition [off_count==0] is true, the
condition action off_count++ is immediately executed.

Transition Action. The transition action is executed after the transition
destination has been determined to be valid provided the condition, if
specified, is true. If the transition consists of multiple segments, the transition
action is only executed when the entire transition path to the final destination
is determined to be valid. Precede the transition action with a backslash.

In the preceding example, if the condition [off_count==0] is true, and the
destination state Off is valid, the transition action Light_off is executed.

Valid Transitions
In most cases, a transition is valid when the source state of the transition
is active and the transition label is valid. Default transitions are slightly

2-16

Transitions

different because there is no source state. Validity of a default transition
to a substate is evaluated when there is a transition to its superstate,
assuming the superstate is active. This labeling criterion applies to both
default transitions and general case transitions. The following are possible
combinations of valid transition labels.

Transition Label Is Valid If...

Event only That event occurs

Event and condition That event occurs and the condition is true

Condition only Any event occurs and the condition is true

Action only Any event occurs

Not specified Any event occurs

2-17

2 Stateflow Notation

Transition Connections
Stateflow notation supports a wide variety of transition connections, which
are demonstrated by the examples in the following topics:

• “Transitions to and from Exclusive (OR) States” on page 2-18

• “Transitions to and from Junctions” on page 2-18

• “Transitions to and from Exclusive (OR) Superstates” on page 2-19

• “Transitions to and from Substates” on page 2-20

• “Self-Loop Transitions” on page 2-21

• “Inner Transitions” on page 2-22

Transitions to and from Exclusive (OR) States
This example shows simple transitions to and from exclusive (OR) states.

The transition On→Off is valid when state On is active and the event
Switch_off occurs. The transition Off→On is valid when state Off is active
and event Switch_on occurs.

See “Transitions to and from Exclusive (OR) States Examples” on page 3-44
for more information on the semantics of this notation.

Transitions to and from Junctions
This example shows transitions to and from a connective junction.

2-18

Transition Connections

This is a Stateflow diagram of a soda machine. The Stateflow diagram
is called when the external event Selection_made occurs. The Stateflow
diagram awakens with the Waiting state active. The Waiting state is a
common source state. When the event Selection_made occurs, the Stateflow
diagram transitions from the Waiting state to one of the other states based on
the value of the variable select. One transition is drawn from the Waiting
state to the connective junction. Four additional transitions are drawn from
the connective junction to the four possible destination states.

See “Transitions from a Common Source to Multiple Destinations Example”
on page 3-77 for more information on the semantics of this notation.

Transitions to and from Exclusive (OR) Superstates
This example shows transitions to and from an exclusive (OR) superstate
and the use of a default transition.

2-19

2 Stateflow Notation

This is an expansion of the soda machine Stateflow diagram that includes
the initial example of the On and Off exclusive (OR) states. On is now a
superstate containing the Waiting and soda choices states. The transition
Off→On is valid when state Off is active and event Switch_on occurs. Now
that On is a superstate, this is an explicit transition to the On superstate.

For a transition to a superstate to be a valid, the destination substate must
be implicitly defined. The destination substate for On is implicitly defined by
making the Waiting substate the destination state of a default transition.
This notation defines that the resultant transition is made from the Off state
to the state On.Waiting.

The transition from On to Off is valid when state On is active and event
Switch_off occurs. However, when the Switch_off event occurs, a transition
to the Off state must take place no matter which of the substates of On is
active. This top-down approach simplifies the Stateflow diagram by looking
at the transitions out of the superstate without considering all the details of
states and transitions within the superstate.

See “Default Transition Examples” on page 3-56 for more information on the
semantics of this notation.

Transitions to and from Substates
The following example shows transitions to and from exclusive (OR) substates.

2-20

Transition Connections

This Stateflow diagram shows a transition from one OR substate to another
OR substate: the transition from Waiting.Ready to Orange.The transition
to the state In_motion is valid when state Waiting.Ready is active and the
event Selection_made occurs, providing that the variable select equals
1. This transition defines an explicit exit from the Waiting.Ready state
and an implicit exit from the Waiting superstate. On the destination side,
this transition defines an implicit entry into the Orange superstate and an
explicit entry into the Orange.In_motion substate.

See “Transitioning from a Substate to a Substate with Events Example” on
page 3-48 for more information on the semantics of this notation.

Self-Loop Transitions
A transition segment from a state to a connective junction that has an
outgoing transition segment from the connective junction back to the state is
a self-loop transition as shown in the following example:

2-21

2 Stateflow Notation

See these sections for examples of self-loop transitions:

• “Connective Junction — Self-Loop Example” on page 2-33

See “Self-Loop Transition Example” on page 3-73 for information on the
semantics of this notation.

• “Connective Junction and For Loops Example” on page 2-34

See “For Loop Construct Example” on page 3-74 for information on the
semantics of this notation.

Inner Transitions
An inner transition is a transition that does not exit the source state. Inner
transitions are most powerful when defined for superstates with exclusive
(OR) decomposition. Use of inner transitions can greatly simplify a Stateflow
diagram, as shown by the following examples:

• “Before Using an Inner Transition” on page 2-22

• “After Using an Inner Transition to a Connective Junction” on page 2-23

• “Using an Inner Transition to a History Junction” on page 2-24

Before Using an Inner Transition
This is an example of a Stateflow diagram that could be simplified by using
an inner transition.

2-22

Transition Connections

Any event occurs and awakens the Stateflow diagram. The default transition
to the connective junction is valid. The destination of the transition is
determined by [C_one] and [C_two]. If [C_one] is true, the transition to A1
is true. If [C_two] is true, the transition to A2 is valid. If neither [C_one] nor
[C_two] is true, the transition to A3 is valid. The transitions among A1, A2,
and A3 are determined by E_one, [C_one], and [C_two].

After Using an Inner Transition to a Connective Junction
This example simplifies the preceding example using an inner transition to
a connective junction.

2-23

2 Stateflow Notation

Any event occurs and awakens the Stateflow diagram. The default transition
to the connective junction is valid. The destination of the transitions is
determined by [C_one] and [C_two].

The Stateflow diagram is simplified by using an inner transition in place
of the many transitions among all the states in the original example. If
state A is already active, the inner transition is used to reevaluate which of
the substates of state A is to be active. When event E_one occurs, the inner
transition is potentially valid. If [C_one] is true, the transition to A1 is
valid. If [C_two] is true, the transition to A2 is valid. If neither [C_one] nor
[C_two] is true, the transition to A3 is valid. This solution is much simpler
than the previous one.

See “Processing the First Event with an Inner Transition to a Connective
Junction” on page 3-65 for more information on the semantics of this notation.

Using an Inner Transition to a History Junction
This example shows an inner transition to a history junction.

2-24

Transition Connections

State Power_on.High is initially active. When event Reset occurs, the inner
transition to the history junction is valid. Because the inner transition
is valid, the currently active state, Power_on.High, is exited. When the
inner transition to the history junction is processed, the last active state,
Power_on.High, becomes active (is reentered). If Power_on.Low was active
under the same circumstances, Power_on.Low would be exited and reentered
as a result. The inner transition in this example is equivalent to drawing an
outer self-loop transition on both Power_on.Low and Power_on.High.

See “Use of History Junctions Example” on page 2-38 for another example
using a history junction.

See “Inner Transition to a History Junction Example” on page 3-68 for more
information on the semantics of this notation.

2-25

2 Stateflow Notation

Default Transitions
You use default transitions to tell Stateflow which one of several states you
enter when you first enter a chart or a state that has substates. See the
following topics for information on default transitions:

• “What Is a Default Transition?” on page 2-26

• “Drawing Default Transitions” on page 2-26

• “Labeling Default Transitions” on page 2-27

• “Default Transition Examples” on page 2-27

What Is a Default Transition?
Default transitions are primarily used to specify which exclusive (OR) state
is to be entered when there is ambiguity among two or more neighboring
exclusive (OR) states. They have a destination but no source object. For
example, default transitions specify which substate of a superstate with
exclusive (OR) decomposition the system enters by default in the absence of
any other information such as a history junction. Default transitions are also
used to specify that a junction should be entered by default.

Drawing Default Transitions
Click the Default transition button in the toolbar, and click a location in the
drawing area close to the state or junction you want to be the destination for
the default transition. Drag the mouse to the destination object to attach the
default transition. In some cases it is useful to label default transitions.

One of the most common Stateflow programming mistakes is to create
multiple exclusive (OR) states without a default transition. In the absence of
the default transition, there is no indication of which state becomes active by
default. Note that this error is flagged when you simulate the model using the
Debugger with the State Inconsistencies option enabled.

This table shows the button icon and briefly describes a default transition.

2-26

Default Transitions

Name
Button
Icon Description

Default transition Use a default transition to indicate, when
entering this level in the hierarchy, which
object becomes active by default.

Labeling Default Transitions
In some circumstances, you might want to label default transitions. You
can label default transitions as you would other transitions. For example,
you might want to specify that one state or another should become active
depending upon the event that has occurred. In another situation, you
might want to have specific actions take place that are dependent upon the
destination of the transition.

Note When labeling default transitions, take care to ensure that there is
always at least one valid default transition. Otherwise, a Stateflow chart can
transition into an inconsistent state.

Default Transition Examples
The following examples show the use of default transitions in Stateflow
diagrams:

• “Default Transition to a State Example” on page 2-27

• “Default Transition to a Junction Example” on page 2-28

• “Default Transition with a Label Example” on page 2-29

Default Transition to a State Example
This example shows a use of default transitions.

2-27

2 Stateflow Notation

When the Stateflow diagram is first awakened, it must decide whether to
activate state S or state B since they are exclusive (OR) states. The answer
is given by the default transition to superstate S, which is taken if valid.
Because there are no conditions on this default transition, it is taken.

State S, which is now active, has two substates, A and D. Which substate
becomes active? Only one of them can be active because they are exclusive
(OR) states. The answer is given by the default transition to substate D, which
is taken if valid. Because there are no conditions on this default transition, it
is taken.

Suppose at a different execution point the Stateflow diagram is awakened by
the occurrence of event d and state B is active. The transition from state B to
state S is valid. When the system enters state S, it enters substate D because
the default transition is defined.

See “Default Transition Examples” on page 3-56 for more information on the
semantics of this notation.

The default transitions are required for the Stateflow diagram to execute.
Without the default transition to state S, when the Stateflow diagram is
awakened, none of the states becomes active. You can detect this situation at
run-time by checking for state inconsistencies. See “Controlling Animation in
the Debugging Window” on page 15-8 for more information.

Default Transition to a Junction Example
This example shows a default transition to a connective junction.

2-28

Default Transitions

In this example, the default transition to the connective junction defines
that upon entering the Counting state, the destination is determined by the
condition on each transition segment.

See “Default Transition to a Junction Example” on page 3-57 for more
information on the semantics of this notation.

Default Transition with a Label Example
The following example shows the labeling of default transitions.

If state A is initially active and either e1 or e2 occurs, the transition from
state A to superstate B is valid. The substates B1 and B2 both have default
transitions. The default transitions are labeled to specify the event that
triggers the transition. If event e1 occurs, the transition A to B1 is valid. If
event e2 occurs, the transition A to B2 is valid.

2-29

2 Stateflow Notation

See “Labeled Default Transitions Example” on page 3-59 for more information
on the semantics of this notation.

2-30

Connective Junctions

Connective Junctions
A connective junction represents a decision point between alternate transition
paths taken for a single transition. See the following topics for more
information on connective junctions:

• “What Is a Connective Junction?” on page 2-31

• “Flow Diagram Notation with Connective Junctions” on page 2-31

What Is a Connective Junction?
The connective junction enables representation of different possible transition
paths for a single transition. Connective junctions are used to help represent
the following:

• Variations of an if-then-else decision construct, by specifying conditions
on some or all of the outgoing transitions from the connective junction

• A self-loop transition back to the source state if none of the outgoing
transitions is valid

• Variations of a for loop construct, by having a self-loop transition from
the connective junction back to itself

• Transitions from a common source to multiple destinations

• Transitions from multiple sources to a common destination

• Transitions from a source to a destination based on common events

Note An event cannot trigger a transition from a connective junction to
a destination state.

See “Connective Junction Examples” on page 3-70 for a summary of the
semantics of connective junctions.

Flow Diagram Notation with Connective Junctions
Flow diagram notation uses connective junctions to represent common code
structures like for loops and if-then-else constructs without the use of

2-31

2 Stateflow Notation

states. And by reducing the number of states in your Stateflow diagrams, flow
diagram notation produces more efficient generated code that helps optimize
memory use.

Flow diagram notation employs combinations of the following:

• Transitions to and from connective junctions

• Self-loops to connective junctions

• Inner transitions to connective junctions

Flow diagram notation, states, and state-to-state transitions seamlessly
coexist in the same Stateflow diagram. The key to representing flow diagram
notation is in the labeling of the transitions (specifically the use of action
language) as shown by the following examples.

Connective Junction with All Conditions Specified Example

In the example on the left, if state A is active when event e occurs, the
transition from state A to any of states D, E, or F takes place if one of the
conditions [c1], [c2], or [c3] is met.

In the equivalent representation on the right, a transition from the source
state to a connective junction is labeled by the event. Transitions from the
connective junction to the destination states are labeled by the conditions. If
state A is active when event e occurs, the transition from A to the connective
junction occurs first. The transition from the connective junction to a
destination state follows based on which of the conditions [c1], [c2], or [c3]

2-32

Connective Junctions

is true. If none of the conditions is true, no transition occurs and state A
remains active.

See “If-Then-Else Decision Construct Example” on page 3-71 for more
information on the semantics of this notation.

Connective Junction with One Unconditional Transition
Example
The transition A to B is valid when A is active, event E_one occurs, and [C_one]
is true. The transition A to C is valid when A is active, event E_one occurs, and
[C_two] is true. Otherwise, given A is active and event E_one occurs, the
transition A to D is valid. If you do not explicitly specify condition [C_three],
it is implicit that the transition condition is not [C_one] and not [C_two].

See “If-Then-Else Decision Construct Example” on page 3-71 for information
on the semantics of this notation.

Connective Junction — Self-Loop Example
In some situations, the transition event occurs but a condition is not met.
No transition is taken, but an action is generated. You can represent this
situation by using a connective junction or a self-loop transition (transition
from state to itself).

2-33

2 Stateflow Notation

In the example on the left, if State A is active and event e occurs and the
condition [c1] is met, the transition from A to B is taken, generating action
a1. The transition from state A to state A is valid if event e occurs and [c1] is
not true. In this self-loop transition, the system exits and reenters state A,
and executes action a2.

In the equivalent representation on the right, the use of a connective junction
makes it unnecessary to specify the implied condition [~c1] explicitly.

See “Self-Loop Transition Example” on page 3-73 for more information on the
semantics of this notation.

Connective Junction and For Loops Example
This example shows a combination of flow diagram notation and state
transition notation. Self-loop transitions to connective junctions can be used
to represent for loop constructs.

In state A, event E occurs. The transition from state A to state B is valid if
the conditions along the transition path are true. The first segment of the
transition does not have a condition, but does have a condition action. The
condition action, {i=0}, is executed. The condition on the self-loop transition
is evaluated as true and the condition actions {i++;func1()} execute. The
condition actions execute until the condition [i<10] is false. The condition
actions on both the first segment and the self-loop transition to the connective
junction effectively execute a for loop (for i values 0 to 9 execute func1()).
The for loop is executed outside the context of a state. The remainder of the
path is evaluated. Because there are no conditions, the transition completes
at the destination, state B.

2-34

Connective Junctions

See “For Loop Construct Example” on page 3-74 for information on the
semantics of this notation.

Flow Diagram Notation Example
This example shows a real-world use of flow diagram notation and state
transition notation. This Stateflow diagram models an 8-bit analog-to-digital
converter (ADC).

Consider the case when state Sensor.Low is active and event UPDATE occurs.
The inner transition from Sensor to the connective junction is valid. The next
transition segment has a condition action, {start_adc()}, which initiates
a reading from the ADC. The self-loop on the second connective junction
repeatedly tests the condition [adc_busy()]. This condition evaluates as true
once the reading settles (stabilizes) and the loop completes. This self-loop
transition is used to introduce the delay needed for the ADC reading to settle.
The delay could have been represented by another state with some sort of
counter. Using flow notation in this example avoids an unnecessary use of a
state and produces more efficient code.

The next transition segment condition action, {sensorValue=read_adc()},
puts the new value read from the ADC in the data object sensorValue.
The final transition segment is determined by the value of sensorValue.
If [sensorValue <100] is true, the state Sensor.Low is the destination.
If [sensorValue >200] is true, the state Sensor.High is the destination.
Otherwise, state Sensor.Normal is the destination state.

2-35

2 Stateflow Notation

See “Flow Diagram Notation Example” on page 3-75 for information on the
semantics of this notation.

Connective Junction from a Common Source to Multiple
Destinations Example
Transitions A to B and A to C share a common source state A. An alternative
representation uses one arrow from A to a connective junction, and multiple
arrows labeled by events from the junction to the destination states B and C.

See “Transitions from a Common Source to Multiple Destinations Example”
on page 3-77 for information on the semantics of this notation.

Connective Junction Common Events Example
Suppose, for example, that when event e1 occurs, the system, whether it is in
state A or B, transfers to state C. Suppose that transitions A to C and B to C

2-36

Connective Junctions

are triggered by the same event e1, so that both destination state and trigger
event are common to the transitions. There are three ways to represent this:

• By drawing transitions from A and B to C, each labeled with e1

• By placing A and B in one superstate S, and drawing one transition from S
to C, labeled with e1

• By drawing transitions from A and B to a connective junction, then drawing
one transition from the junction to C, labeled with e1

This Stateflow diagram shows the simplification using a connective junction.

See “Transitions from a Source to a Destination Based on a Common Event
Example” on page 3-79 for information on the semantics of this notation.

2-37

2 Stateflow Notation

History Junctions
History junctions record the previously active state of the state in which they
are resident. See the following sections for information on history junctions:

• “What Is a History Junction?” on page 2-38

• “History Junctions and Inner Transitions” on page 2-39

What Is a History Junction?
A history junction is used to represent historical decision points in the
Stateflow diagram. The decision points are based on historical data relative
to state activity. Placing a history junction in a superstate indicates that
historical state activity information is used to determine the next state to
become active. The history junction applies only to the level of the hierarchy
in which it appears.

Use of History Junctions Example
The following example uses a history junction:

Superstate Power_on has a history junction and contains two substates. If
state Power_off is active and event switch_on occurs, the system could enter
either Power_on.Low or Power_on.High. The first time superstate Power_on
is entered, substate Power_on.Low is entered because it has a default
transition. At some point afterward, if state Power_on.High is active and
event switch_off occurs, superstate Power_on is exited and state Power_off
becomes active. Then event switch_on occurs. Since Power_on.High was
the last active state, it becomes active again. After the first time Power_on

2-38

History Junctions

becomes active, the choice between entering Power_on.Low or Power_on.High
is determined by the history junction.

See “Default Transition and a History Junction Example” on page 3-58 for
more information on the semantics of this notation.

History Junctions and Inner Transitions
By specifying an inner transition to a history junction, you can specify that,
based on a specified event and/or condition, the active state is to be exited and
then immediately reentered.

See “Using an Inner Transition to a History Junction” on page 2-24 for an
example of this notation.

See “Inner Transition to a History Junction Example” on page 3-68 for more
information on the semantics of this notation.

2-39

2 Stateflow Notation

Boxes
You use boxes to graphically organize your diagram. Beyond this
organizational use, boxes contribute little to how Stateflow diagrams execute.

The following is an example of a Stateflow Box object:

In this example, a box labeled Motor groups all the objects needed to control
a simple motor. There can be many more objects displayed on the Stateflow
chart along with this box, but now everything needed to control the motor
is kept separate.

2-40

Graphical Functions

Graphical Functions
A graphical function is a function defined graphically by a flow diagram that
provides convenience and power to Stateflow action language.

The following example shows a graphical function side by side in a Stateflow
diagram with the transition that calls it:

In this example the function z = f(x,y) is called in the condition action of
the transition from state A to state B. The function is defined using symbols
that are valid only within the function itself. The function is called using data
objects available to states A and B and their parent states (if any).

Graphical functions are similar to textual functions such as MATLAB and C
functions in the following ways:

• Graphical functions can accept arguments and return results.

• You can invoke graphical functions in transition and state actions.

Unlike C and MATLAB functions, however, graphical functions are
full-fledged Stateflow graphical objects. You use the Stateflow editor to create
them and they reside in your Stateflow model along with the diagrams that
invoke them. This makes graphical functions easier to create, access, and
manage than textual custom code functions, whose creation requires external
tools, and whose definition resides separately from the model.

2-41

2 Stateflow Notation

2-42

3

Stateflow Semantics

Stateflow semantics describe how the notation in Stateflow charts is
interpreted and implemented into a behavior. Knowledge of Stateflow
semantics is important to make sound Stateflow diagram design decisions
for code generation. Different notations result in different behavior during
simulation and generated code execution.

This chapter explains the semantics of Classic Stateflow charts. You can
also build Mealy and Moore charts, which use a subset of Classic Stateflow
semantics (see Chapter 5, “Building Mealy and Moore Charts in Stateflow”).

The following sections describe Classic Stateflow semantics:

Executing an Event (p. 3-3) Describes the behavior of events that
drive Stateflow chart execution.

Executing a Chart (p. 3-6) Describes how charts become active,
execute, and become inactive.

Executing a Transition (p. 3-8) Describes the processes for grouping
and executing a transition.

Transition Testing Order (p. 3-11) Describes implicit and explicit modes
for ordering transitions.

Entering, Executing, and Exiting a
State (p. 3-21)

Describes how states become active,
execute, and become inactive.

Execution Order for Parallel States
(p. 3-27)

Describes implicit and explicit modes
for setting execution order of parallel
states

3 Stateflow Semantics

Early Return Logic for Event
Broadcasts (p. 3-39)

Describes the logic employed
when events interrupt the normal
execution behavior of Stateflow
charts.

Semantic Examples (p. 3-42) A list of the semantic (behavioral)
examples provided in the remainder
of this chapter.

Transitions to and from Exclusive
(OR) States Examples (p. 3-44)

Examples that describe the behavior
of transitions that exit and enter
exclusive (OR) states.

Condition Action Examples (p. 3-50) Examples that describe the behavior
of Stateflow diagrams using
condition actions.

Default Transition Examples
(p. 3-56)

Examples that describe the behavior
of Stateflow diagrams using default
transitions.

Inner Transition Examples (p. 3-62) Examples that describe the behavior
of Stateflow diagrams using inner
transitions.

Connective Junction Examples
(p. 3-70)

Examples that describe the behavior
of Stateflow diagrams using
connective junctions.

Event Actions in a Superstate
Example (p. 3-82)

Example that describes the behavior
of Stateflow diagrams using event
actions.

Parallel (AND) State Examples
(p. 3-84)

Example Stateflow diagrams
demonstrating the behavior of
parallel (AND) states.

Directed Event Broadcasting
Examples (p. 3-96)

Example Stateflow diagrams
demonstrating how to use directed
event broadcasting.

3-2

Executing an Event

Executing an Event
A Stateflow chart executes only in response to an event. This occurs on two
levels. First, Simulink updates the chart, which awakens it for execution.
Second, once the chart is awakened, it continues to respond to events until
there are no more events. The chart then goes to sleep. When another event
occurs, the chart is awakened (from sleep) to respond to the event.

Because Stateflow runs on a single thread, actions that take place based on
an event are atomic to that event. This means that all activity caused by the
event in the chart is completed before returning to whatever activity was
taking place prior to reception of the event. Once action is initiated by an
event, it is completed unless interrupted by an early return.

See the following topics to continue with the behavior of events:

• “Sources for Stateflow Events” on page 3-3

• “Processing Events” on page 3-4

Sources for Stateflow Events
Stateflow charts are awakened by Simulink events. From the Stateflow
perspective, this is an event like any other event, with the exception that it
comes from Simulink. After the chart is made active, it can respond to the
occurrence of this event in its action language.

You can also use events to control the processing of your Stateflow diagrams
by broadcasting events in the action language associated with states and
transitions in the chart itself. For the mechanics of broadcasting events in
action language, see “Broadcasting Events in Actions” on page 8-46. For
examples using event broadcasting and directed event broadcasting, see the
following:

• “Condition Actions to Broadcast Events to Parallel (AND) States Example”
on page 3-54

• “Cyclic Behavior to Avoid with Condition Actions Example” on page 3-54

• “Event Broadcast State Action Example” on page 3-84

3-3

3 Stateflow Semantics

• “Event Broadcast Transition Action with a Nested Event Broadcast
Example” on page 3-87

• “Event Broadcast Condition Action Example” on page 3-91

• Directed Event Broadcasting

Before you can broadcast events in the action language of a Stateflow chart,
you must first add them. You can do this in the Add menu of the Stateflow
diagram editor or through the Model Explorer. See “Adding Data Using
the Stateflow Editor” on page 7-27 for a description of the ways that you
add events in Stateflow.

Events have hierarchy (a parent) and scope. The parent and scope together
define a range of access to events. It is primarily the event’s parent that
determines who can trigger on the event (has receive rights). See the Name
and Parent fields for an event in “Setting Event Properties in the Event
Dialog” on page 7-8 for more information.

Processing Events
When an event occurs, it is processed from the top or root of the Stateflow
diagram down through the hierarchy of the diagram. At each level in the
hierarchy, any during and on event_name actions for the active state are
executed and completed and then a check for the existence of a valid explicit or
implicit transition among the children of the state is conducted. The examples
in this chapter demonstrate the top-down processing of events.

All events, with the exception of the output edge trigger to Simulink (see the
following note), have the following execution in a Stateflow diagram:

1 If the receiver of the event is active, then it is executed (see “Executing an
Active Chart” on page 3-6 and “Executing an Active State” on page 3-23).
(The event receiver is the parent of the event unless the event was explicitly
directed to a receiver using the send() function.)

2 If the receiver of the event is not active, nothing happens.

3 After broadcasting the event, the broadcaster performs early return logic
based on the type of action statement that caused the event.

3-4

Executing an Event

For an understanding of early return logic, see “Early Return Logic for
Event Broadcasts” on page 3-39.

Note Output edge trigger event execution in Simulink is equivalent to
toggling the value of an output data value between 1 and 0. It is not treated
as a Stateflow event. See “Defining Edge-Triggered Output Events” on
page 10-26.

3-5

3 Stateflow Semantics

Executing a Chart
A Stateflow chart executes when it is triggered by an event from Simulink.
Like all events, this event is processed top down in the updated chart. See
“Executing an Event” on page 3-3.

A chart is inactive when it is first triggered by an event from the Simulink
model and has no active states within it. After the chart executes and
completely processes its initial trigger event from the Simulink model, it exits
to the model and goes to sleep, but still remains active. A sleeping chart has
active states within it, but no events to process. When Simulink triggers the
chart the next time, it is an active but sleeping chart.

• “Executing an Inactive Chart” on page 3-6

• “Executing an Active Chart” on page 3-6

• “Executing a Chart at Initialization” on page 3-7

Executing an Inactive Chart
When a chart is inactive and first triggered by an event from Simulink, it first
executes its set of default flow graphs (see “Executing a Set of Flow Graphs”
on page 3-9). If this does not cause an entry into a state and the chart has
parallel decomposition, then each parallel state is entered (see “Entering a
State” on page 3-21).

If executing the default flow paths does not cause state entry, a state
inconsistency error occurs.

Executing an Active Chart
After a chart has been triggered the first time by the Simulink model, it is an
active chart. When it receives another event from Simulink, it executes again
as an active chart. If the chart has no states, each execution is equivalent to
initializing a chart. Otherwise, the active children are executed. Parallel
states are executed in the same order that they are entered.

3-6

Executing a Chart

Executing a Chart at Initialization

By default, the first time a chart wakes up it executes the default transition
paths, at which time it can access inputs, write to outputs, and broadcast
events. If you want your chart to begin executing from a known configuration,
you can enable the option to execute at initialization. When you turn on this
option, Stateflow initializes a chart’s state configuration at time 0 instead
of at the first occurrence of an input event. The default transition paths
of the chart are executed during the model initialization phase at time 0,
corresponding to the mdlInitializeConditions() phase for S-functions.

You enable the option Execute (enter) Chart At Initialization in Stateflow
chart properties, as described in “Setting Properties for Individual Charts”
on page 10-6.

Note If an output of this chart connects to a SimEvents™ block, you should
not enable this option. To learn more about using Stateflow and SimEvents
blocks together in a model, see “Using Stateflow with SimEvents” in the
SimEvents documentation.

Due to the transient nature of the initialization phase, you should not perform
certain actions in the default transition paths of the chart (and associated
state entry actions) which are set to execute at initialization. Follow these
guidelines:

• Do not access chart input data because the blocks connected to Stateflow
chart input ports may not have initialized their outputs yet.

• Do not call exported graphical functions from other charts because those
charts may not have been initialized yet.

• Do not broadcast function-call output events because the triggered
subsystems may have not been initialized yet.

Execute at initialization is ignored in Stateflow charts that do not contain
states.

3-7

3 Stateflow Semantics

Executing a Transition
Transitions play a large role in defining the animation or execution of a
system. If your chart has exclusive (OR) states, its execution begins with the
default transitions that point to the first active states in your chart.

Transitions have sources and destinations; thus, any actions associated with
the sources or destinations are related to the transition that joins them. The
type of the source and destination is equally important to define the semantics.

See the following topics:

• “Transition Flow Graph Types” on page 3-8

• “Executing a Set of Flow Graphs” on page 3-9

Transition Flow Graph Types
Before transitions are executed for an active state or for a chart, they are
grouped by the following types:

• Default flow graphs are all default transition segments that start with
the same parent.

• Inner flow graphs are all transition segments that originate on a state
and reside entirely within that state.

• Outer flow graphs are all transition segments that originate on the
respective state but reside at least partially outside that state.

Each set of flow graphs includes other transition segments connected to a
qualifying transition segment through junctions and transitions. Consider
the following example:

3-8

Executing a Transition

In this example, state A has both an inner and a default transition that
connect to a junction with outgoing transitions to states A.A1 and A.A2. If
state A is active, its set of inner flow graphs includes the inner transition
and the outgoing transitions from the junction to state A.A1 and A.A2. In
addition, state A’s set of default flow graphs includes the default transition to
the junction along with the two outgoing transitions from the junction to state
A.A1 and A.A2. In this case, the two outgoing transition segments from the
junction become members of more than one flow graph type.

Executing a Set of Flow Graphs
Each flow graph group is executed in the order of group priority until a valid
transition is found. The default transitions group is executed first, followed by
the outer transitions group and then the inner transitions group. Each flow
graph group is executed with the following procedure.

1 Order the group’s transition segments for the active state.

An active state can have several possible outgoing transitions. These
are ordered before checking them for a valid transition. See “Transition
Testing Order” on page 3-11.

2 Select the next transition segment in the set of ordered transitions.

3 Test the transition segment for validity.

3-9

3 Stateflow Semantics

4 If the segment is invalid, go to step 2.

5 If the destination of the transition segment is a state, do the following:

a No more transition segments are tested and a transition path is formed
by including the transition segment from each preceding junction back
to the starting transition.

b The states that are the immediate children of the parent of the transition
path are exited (see “Exiting an Active State” on page 3-23).

c The transition action for the final transition segment of the full
transition path is executed.

d The destination state is entered (see “Entering a State” on page 3-21).

6 If the destination is a junction with no outgoing transition segments, do
the following:

a Testing stops without any states being exited or entered.

7 If the destination is a junction with outgoing transition segments, repeat
step 1 for the set of outgoing segments from the junction.

8 After testing all outgoing transition segments at a junction, back up
the incoming transition segment that brought you to the junction and
continue at step 2, starting with the next transition segment after the
backup segment. The set of flow graphs is done executing when all starting
transitions have been tested.

3-10

Transition Testing Order

Transition Testing Order
If there is more than one transition from a source (state or junction) in a
Stateflow diagram, then the transitions are numbered 1, 2, 3, ..., according
to their testing order.

By default, Stateflow determines the order of testing transitions from a
single source based on a set of internal rules. This is called the implicit order.
You also have an option to switch from implicit ordering of transitions to a
user-defined, or explicit, ordering. In this mode, you control the order in which
transitions are tested for execution.

• “Implicit Order Mode” on page 3-11

• “Explicit Order Mode” on page 3-15

Implicit Order Mode
Implicit order mode is the default mode both for old models and for newly
created models. Transitions from a single source are ordered for testing
according to the following three sorting guidelines, which appear in order of
their precedence (first step is highest priority):

1 Endpoint Hierarchy – Transitions whose end points are attached to higher
hierarchical levels are placed first in testing order. See the topic “Ordering
by Hierarchy” on page 3-11.

2 Label – Transitions are ordered for testing according to the types of action
language present in their labels. See “Ordering by Label” on page 3-12.

3 Angular Surface Position of Transition Source – Transitions are ordered
for testing based on the angular position of the transition source on the
surface of the originating object. See “Ordering by Geometric Position of
Source” on page 3-12.

Ordering by Hierarchy
Transitions are evaluated in a top-down manner based on hierarchy. In the
following example, an event occurs while state A1 is active.

3-11

3 Stateflow Semantics

Because state B is a sibling of state A and at a higher hierarchical level
than state A2, a sibling of A1, the transition from state A1 to state B takes
precedence over the transition from state A1 to state A2.

Ordering by Label
Transitions of equal endpoint hierarchical level are evaluated based on their
labels, in the following order of precedence:

1 Labels with events and conditions

2 Labels with events

3 Labels with conditions

4 No label

The following example demonstrates ordering of single source transitions by
the angular surface position of the source.

Ordering by Geometric Position of Source
Equivalent transitions (based on their labels and the hierarchy of their source
and endpoints) are ordered based on the angular position on the surface of

3-12

Transition Testing Order

the source object for the outgoing transitions. The smallest clock position has
the highest priority. For example, a transition with a 2 o’clock source position
has a higher priority than a transition with a 4 o’clock source position. A
transition with a 12 o’clock source position has the lowest possible priority.

Multiple outgoing transitions from states that are of equivalent label
and source and end point hierarchy priority are evaluated in a clockwise
progression starting at the upper left corner of the source state.

In this example, the transitions are of equivalent label priority. The conditions
[C_one == 1] and [C_two == 2] are both false and the condition [C_three == 3]
is true. Also, the hierarchical level of the endpoint of each transition is the
same because all the states in the example are siblings.

The outgoing transitions from state A in the preceding diagram are evaluated
in the following order:

1 Starting at the upper left corner of the source state A in a clockwise
progression, the first transition is the transition from state A to state B.

Since the condition [C_one == 1] is false, this transition is not valid.

3-13

3 Stateflow Semantics

2 The next transition in a clockwise progression is the transition from state
A to state C.

Since the condition [C_two == 2] is false, this transition is not valid.

3 The next transition is the transition from state A to state D.

Since the condition [C_three == 3] is true, this transition is valid and is
taken.

Multiple outgoing transitions from junctions that are of equivalent label
priority are evaluated according to the same angular position prioritization.

In this example,

• All outgoing transitions from the junction have conditions, which makes
them equal in label priority.

• The conditions [C_three == 3] and [C_four == 4] are true.

• The junction source point for the transition to state E is exactly 12 o’clock.

3-14

Transition Testing Order

The outgoing transitions from the junction are evaluated in the following
order:

1 The transition to state B is evaluated. Since the condition [C_one == 1]
is false, this transition is not valid.

2 The transition to state C is evaluated. Since the condition [C_two == 2]
is false, this transition is not valid.

3 The transition to state D is evaluated. Since the condition [C_three == 3] is
true, this transition is valid and taken.

Since the transition to D is taken, the transition to state E is not evaluated.

Explicit Order Mode
Implicit ordering rules are complex and hard to master. Additionally, when
you modify a diagram for cosmetic purposes, rearranging transitions may
inadvertently change execution. This is why you have an option to switch
from implicit ordering of transitions to a user-defined, or explicit, ordering. In
this mode, you control the order in which transitions are tested for execution.

Note You can reorder transitions only within their type (inner, outer, or
default). For more information, see “Transition Flow Graph Types” on page
3-8.

To control the order of transitions, you have to perform the following steps:

1 “Switching to Explicit Order Mode” on page 3-16

2 “Changing the Transition Order” on page 3-18

When you switch to explicit transition ordering, Stateflow stops evaluating
the implicit rules. All the existing transitions in a diagram retain their
current order numbers until you explicitly change them. All the newly created
transitions for a source are automatically numbered in the order you create
them, starting with the next available number for the source.

3-15

3 Stateflow Semantics

You can change the order of outgoing transitions for a source by explicitly
renumbering them. When you change a transition number, Stateflow
automatically renumbers the other outgoing transitions for the source by
preserving their relative order. This is similar to taking a book out of a stack
and then putting it back in a different place: the order of the other books
is unchanged, and the books are renumbered accordingly. This behavior is
consistent with the automatic renumbering rules for the Simulink ports.

For example, if you have a source with five outgoing transitions, as
shown below, changing transition 4 to 2 results in the following automatic
renumbering.

Automatic Renumbering of Transitions During Explicit Reordering

Switching to Explicit Order Mode
You switch to explicit ordering of transitions by setting your chart property
preferences.

1 In the Stateflow diagram editor, from the File menu, select Chart
Properties.

The properties dialog for the chart appears, as shown:

3-16

Transition Testing Order

�������	�
�����	��������

2 Select the User specified transition execution order check box.

3 Click OK to apply the change and close the dialog.

Now you can change the transition execution order for any source in the chart.

Switching between modes. If you switch back to implicit order mode
after having explicitly reordered the transitions, the transition order is reset
to follow the implicit rules.

Similarly, if you eventually change back to explicit order mode, without
making any changes to the diagram, Stateflow restores the previous explicit
transition order. Whenever you switch from one transition ordering mode to

3-17

3 Stateflow Semantics

another, Stateflow displays the warnings about the changes in transition
numbers in the diagnostic viewer.

Note If you change back to explicit order mode after having made changes
to the diagram, Stateflow may not be able to restore the previous explicit
transition order. Review the warnings in the diagnostic viewer and change
the transition order, as necessary.

Changing the Transition Order
You change the order of transitions originating from a source by explicitly
renumbering them.

1 Right-click a transition and select Execution Order.

Note If you select Execution Order while in implicit order mode, the only
option available is Enable ‘User specified execution order’ for this
chart. This opens the properties dialog for the chart, to let you switch to
explicit order mode, as described in “Switching to Explicit Order Mode”
on page 3-16.

A context menu of available transition numbers appears, with a checkmark
next to the current number for this transition. For example, if there are five
transitions originating from a source, and you are modifying the execution
order for transition 4, the context menu will contain numbers from 1 to 5,
with a checkmark next to number 4, as shown in the following illustration.

3-18

Transition Testing Order

2 Select the new transition number. Stateflow automatically renumbers
the other transitions for the source by preserving the relative transition
order, as shown in the illustration.

3 Repeat this procedure to renumber the other transitions as necessary.

Another way to access the transition order number is through its properties:

1 Right-click a transition and select Properties. The properties dialog for
the transition appears.

2 Click in the Execution order box. A drop-down list of valid transition
numbers appears, as shown in the following illustration.

3-19

3 Stateflow Semantics

3 Select the new transition number and click Apply. If the explicit order
mode is enabled, Stateflow assigns the new number to the current
transition and automatically renumbers the other transitions. If Stateflow
is in the implicit order mode, an error dialog is displayed and the old
number is retained.

3-20

Entering, Executing, and Exiting a State

Entering, Executing, and Exiting a State
States are either active or inactive. The following topics describe the stages
of state execution that take place between becoming active and becoming
inactive:

• “Entering a State” on page 3-21

• “Executing an Active State” on page 3-23

• “Exiting an Active State” on page 3-23

• “State Execution Example” on page 3-24

Entering a State
A state is entered (becomes active) in one of the following ways:

• Its boundaries are crossed by an incoming executed transition.

• Its boundary terminates the arrow end of an incoming transition.

• It is the parallel state child of an activated state.

A state performs its entry action (if specified) when it becomes active. The
state is marked active before its entry action is executed and completed.

The execution steps for entering a state are as follows:

1 If the parent of the state is not active, perform steps 1 through 4 for the
parent first.

2 If this is a parallel state, check if a sibling parallel state previous in entry
order is active. If so, start at step 1 for this parallel state.

Parallel (AND) states are ordered for entry based on their vertical
top-to-bottom position in the diagram editor. Parallel states that occupy the
same vertical level are ordered for entry from left to right.

In the following example, parallel states A and B are aligned at the same
vertical level while states A and C and states B and D are aligned at the
same horizontal position.

3-21

3 Stateflow Semantics

Based on their top-down positions in the diagram editor, the order of
entry for these states is A or B, then C, then D. Because A is left of B, A is
evaluated first and the order of entry is A, B, D, C. Stateflow marks this
order with an order number in the upper right-hand corner of the state (1,
2, 3, 4, respectively)

Step 2 says that if you are entering state D in step 1, check if state B is
active. If it is not, start at step 1 for state B. Step 2 repeats for state B and,
if A is not active, start at step 1 for A. Since there are no parallel states of
lesser entry order, continue with step 3 for state A.

3 Mark the state active.

4 Perform any entry actions.

5 Enter children, if needed:

a Execute the default flow paths for the state unless it contains a history
junction.

b If the state contains a history junction and there is an active child of this
state at some point after the most recent chart initialization, perform
the entry actions for that child.

c If this state has children that are parallel states (parallel decomposition),
perform entry steps 1 to 5 for each state according to its entry order.

6 If this is a parallel state, perform all entry steps for the sibling state next
in entry order if one exists.

3-22

Entering, Executing, and Exiting a State

7 If the transition path parent is not the same as the parent of the current
state, perform entry steps 6 and 7 for the immediate parent of this state.

8 The chart goes to sleep.

Executing an Active State
Active states that receive an event that does not result in an exit from that
state execute a during action to completion if a during action is specified
for that state. An on event_name action executes to completion when the
event specified, event_name, occurs and that state is active. An active state
executes its during and on event_name actions before processing any of its
children’s valid transitions. During and on event_name actions are processed
based on their order of appearance in the state label.

The execution steps for executing a state that receives an event while it is
active are as follows:

1 The set of outer flow graphs is executed (see “Executing a Set of Flow
Graphs” on page 3-9).

If this causes a state transition, execution of the state stops.

Note This step is never required for parallel states.

2 During actions and valid on event name actions are performed.

3 The set of inner flow graphs is executed. If this does not cause a state
transition, the active children are executed, starting at step 1. Parallel
states are executed in the same order that they are entered.

Exiting an Active State
A state is exited (becomes inactive) in one of the following ways:

• Its boundary is the origin of an outgoing executed transition.

• Its boundary is crossed by an outgoing executed transition.

• It is a parallel state child of an activated state.

3-23

3 Stateflow Semantics

A state performs its exit action (if specified) before it becomes inactive. The
state is marked inactive after the exit action has executed and completed.

The execution steps for exiting a state are as follows:

1 If this is a parallel state, and one of its sibling states was entered before
this state, exit the siblings starting with the last-entered and progressing
in reverse order to the first-entered. See step 2 of “Entering a State” on
page 3-21.

2 If there are any active children, perform the exit steps on these states in
the reverse order they were entered.

3 Perform any exit actions.

4 Mark the state as inactive.

State Execution Example
The following example demonstrates the execution semantics (behavior) of
event reactive behavior by active and inactive states.

Inactive Diagram Event Reaction
Initially the Stateflow diagram and its states are inactive. This is the
semantic sequence that follows an event:

1 An event occurs and the Stateflow diagram is awakened.

3-24

Entering, Executing, and Exiting a State

2 The Stateflow diagram checks to see if there is a valid transition as a result
of the event.

A valid default transition to state A is detected.

3 State A is marked active.

4 State A entry actions (entA()) execute and complete.

5 The Stateflow diagram goes back to sleep.

Sleeping Diagram Event Reaction
The Stateflow diagram is now asleep and waiting to be awakened by another
event.

1 Event E_one occurs and the Stateflow diagram is awakened.

State A is active from the preceding steps 1 to 5.

2 The Stateflow diagram root checks to see if there is a valid transition as a
result of E_one. A valid transition is detected from state A to state B.

3 State A exit actions (exitA()) execute and complete.

4 State A is marked inactive.

5 State B is marked active.

6 State B entry actions (entB()) execute and complete.

3-25

3 Stateflow Semantics

7 The Stateflow diagram goes back to sleep, to be awakened by the next event.

3-26

Execution Order for Parallel States

Execution Order for Parallel States
Although multiple parallel (AND) states in the same chart execute
concurrently, Stateflow must determine when to activate each one during
simulation. This ordering determines when each parallel state performs the
actions that take it through all stages of execution, as described in “Entering,
Executing, and Exiting a State” on page 3-21.

Unlike exclusive (OR) states, parallel states do not typically use transitions.
Instead, order of execution is determined by one of the following mechanisms:

• Implicit ordering by geometry

Stateflow uses a set of internal rules to order parallel states according to
geometric position (see “Implicit Ordering of Parallel States” on page 3-28).

• Explicit ordering, specified by user

You can override implicit rules by explicitly specifying the execution order
of parallel states on an individual basis (see “Explicit Ordering of Parallel
States” on page 3-29).

Parallel states are assigned priority numbers based on order of execution.
The lower the number, the higher the priority. Each state’s priority number
appears in its upper right corner.

Execution order is a chart property; all parallel states in the chart inherit the
property setting. You cannot mix implicit and explicit ordering in the same
Stateflow chart. You can mix charts with different ordering modes in the
same Simulink model.

• “Implicit Ordering of Parallel States” on page 3-28

• “Explicit Ordering of Parallel States” on page 3-29

• “Maintaining Order of Parallel States” on page 3-31

• “How Stateflow Assigns Priorities to Restored States” on page 3-35

• “Switching Between Implicit and Explicit Ordering” on page 3-37

• “Ordering of Parallel States in Boxes and Subcharts” on page 3-37

3-27

3 Stateflow Semantics

Implicit Ordering of Parallel States
By default, Stateflow orders parallel states implicitly based on where they
are located in the state diagram. Priority goes from top to bottom and then
left to right, according to these rules:

• The higher a parallel state’s vertical position in the diagram, the higher its
priority for execution.

• Among parallel states with the same vertical position, the left-most state
receives highest priority.

The following example illustrates how these rules apply to top-level parallel
states and parallel substates:

3-28

Execution Order for Parallel States

Explicit Ordering of Parallel States
A disadvantage of implicit ordering is that it creates a dependency between
design layout and execution priority. When you rearrange parallel states in
your diagram, you may inadvertently change order of execution and affect
simulation results. To gain more control over your designs, you can override
implicit ordering by explicitly setting execution priorities.

Using Explicit Ordering for Parallel States
To use explicit ordering for parallel states, you must perform these tasks:

1 “Enabling Explicit Ordering at the Chart Level” on page 3-29

2 “Setting Execution Order for Parallel States Individually” on page 3-31

Enabling Explicit Ordering at the Chart Level. To enable explicit ordering
for parallel states, follow these steps:

1 Open the properties dialog for your chart by selecting Chart Properties
from the File menu in the Stateflow diagram editor.

Tip You can also use one of these methods:

• Right-click inside the top level of the Stateflow chart and select
Properties from the drop-down menu.

• Right-click inside one of the parallel states in the chart and select
Execution Order > Enable user-specified execution order for this
chart from the drop-down menu.

The properties dialog appears.

2 In the properties dialog, select the check box labeled User specified
state/transition execution order, as shown:

3-29

3 Stateflow Semantics

�������	�
�����	��������

3 Click OK.

If your Stateflow chart already contains parallel states that have been
ordered implicitly, the existing priorities are preserved until you explicitly
change them. When you add new parallel states in explicit mode, Stateflow
automatically assigns priorities based on order of creation (see “How

3-30

Execution Order for Parallel States

Explicit Ordering Works” on page 3-31). However you can now explicitly
change execution order on a state by state basis, as described in “Setting
Execution Order for Parallel States Individually” on page 3-31.

Setting Execution Order for Parallel States Individually. After you
enable explicit ordering, you can change the execution order of individual
parallel states. Right-click the parallel state of interest and select a new
priority from the Execution Order menu.

How Explicit Ordering Works
When you enable explicit ordering on a new Stateflow chart — or one that
does not yet contain any parallel states — Stateflow automatically assigns
priority numbers to parallel states in the order you create them, starting with
the next available number within the parent container.

When you first enable explicit ordering on a Stateflow chart that already
contains parallel states, the original implicit priorities are preserved for the
existing parallel states. When you add new parallel states, execution order is
assigned in the same way as for new Stateflow charts — in order of creation.

You can explicitly override execution order assignments at any time on a state
by state basis, as described in “Setting Execution Order for Parallel States
Individually” on page 3-31. When you change execution order for a parallel
state, Stateflow automatically renumbers the other parallel states to preserve
their relative execution order, as described in “Maintaining Order of Parallel
States” on page 3-31.

Maintaining Order of Parallel States
Whether you use implicit or explicit ordering, Stateflow attempts to reconcile
execution priorities when you remove, renumber, or add parallel states in a
chart. In these situations, Stateflow reprioritizes the parallel states to

• Fill in gaps in the sequence so that ordering is always contiguous

• Ensure that no two states have the same priority

• Preserve the intended relative priority of execution

3-31

3 Stateflow Semantics

Preserving Relative Priorities in Implicit Ordering Mode
For implicit ordering, Stateflow preserves the intended relative priority based
on geometry. Consider this example of implicit ordering:

If you remove top-level state b and substate e, Stateflow automatically
reprioritizes the remaining parallel states and substates to preserve implicit
geometric order:

3-32

Execution Order for Parallel States

Preserving Relative Priorities in Explicit Ordering Mode
For explicit ordering, Stateflow preserves the user-specified priorities.
Consider this example of explicit ordering:

3-33

3 Stateflow Semantics

Note that the ordinal names of the parallel states indicate the order in which
they were created. If you change the priority of top-level state 2nd to 3,
add a top-level state 7th, and remove substate 5th, Stateflow automatically
reprioritizes the parallel states and substates as follows:

3-34

Execution Order for Parallel States

As you can see, Stateflow preserved the priority explicitly set for top-level
state 2nd, but renumbered all other parallel states in the chart to preserve
their prior relative order.

How Stateflow Assigns Priorities to Restored States
There are situations in which you need to restore a parallel state after you
have removed it from a Stateflow diagram. In implicit order mode, Stateflow
reassigns the execution priority based on where the state is restored in the
diagram. If the state returns to its original location in the diagram, its
original priority is restored.

3-35

3 Stateflow Semantics

However, in explicit order mode, Stateflow cannot always reinstate the
original execution priority to a restored state. It depends on how the state
is restored, as follows:

If state is removed
by:

And restored by: What is the priority?

Deleting, cutting,
dragging outside
the boundaries of
the parent state,
or dragging so its
boundaries overlap the
parent state

Using the undo
command

The original priority is
restored.

Dragging outside the
boundaries of the
parent state or so its
boundaries overlap
the parent state and
releasing the mouse
button

Dragging it back into
the parent state

The original priority is
lost. Stateflow treats
the restored state as
the last created and
assigns it the lowest
execution priority.

Dragging outside the
boundaries of the
parent state or so its
boundaries overlap the
parent state without
releasing the mouse
button

Dragging it back into
the parent state

The original priority is
restored.

Dragging so its
boundaries overlap
one or more sibling
states

Dragging it to a location
with no overlapping
boundaries inside the
same parent state

The original priority is
restored.

Cutting Pasting The original priority is
lost. Stateflow treats
the restored state as
the last created and
assigns it the lowest
execution priority.

3-36

Execution Order for Parallel States

Switching Between Implicit and Explicit Ordering
If you switch back to implicit mode after having explicitly reordered parallel
states, Stateflow resets execution order to follow implicit rules of geometry.
However, if you switch from implicit to explicit mode, Stateflow does not
restore the previous explicit execution order.

Whenever you switch from one ordering mode to another, Stateflow alerts you
to changes in execution priorities in the diagnostic viewer. Here is an example
of the types of warnings issued after switching from explicit to implicit
ordering for parallel states:

Ordering of Parallel States in Boxes and Subcharts
When you group a set of parallel states inside a box, they retain their relative
execution order. In addition, Stateflow assigns the box its own priority
according to whatever implicit or explicit ordering rules apply. This priority
determines when Stateflow activates the parallel states inside the box.

3-37

3 Stateflow Semantics

When you convert a state with parallel decomposition into a subchart, its
substates retain their relative execution order according to the prevailing
implicit or explicit rules.

3-38

Early Return Logic for Event Broadcasts

Early Return Logic for Event Broadcasts
Stateflow employs early return logic in order to satisfy conflicts with proper
diagram behavior that result from event broadcasts in state or transition
actions.

The following statements are primary axioms of proper Stateflow behavior:

1 Whenever a state is active, its parent should also be active.

2 A state (or chart) with exclusive (OR) decomposition must never have more
than one active child.

3 If a parallel state is active, siblings with higher priority (higher graphical
position in the Stateflow diagram) must also be active.

Because Stateflow runs on a single thread, when it receives an event it
must interrupt its current activity to process all activity resulting from the
broadcast event before returning to its original activity. However, activity
resulting from an event broadcast can conflict with the current activity, giving
rise to the event broadcast. This conflict is resolved through early return logic.

The need for early return logic is best illustrated with an example like the
following:

In this example, assume that state A is initially active. An event, E, occurs
and the following behavior is expected:

3-39

3 Stateflow Semantics

1 The Stateflow diagram root checks to see if there is a valid transition out of
the active state A as a result of event E.

2 A valid transition terminating in state B is found.

3 The condition action of the valid transition executes and broadcasts event F.

Stateflow must now interrupt the anticipated transition from A to B and
take care of any behavior resulting from the broadcast of the event F before
continuing with the transition from A to B.

4 The Stateflow diagram root checks to see if there is a valid transition out of
the active state A as a result of event F.

5 A valid transition terminating in state C is found.

6 State A executes its exit action.

7 State A is marked inactive.

8 State C is marked active.

9 State C executes and completes its entry action.

State C is now the only active child of its chart. Stateflow cannot return to
the transition from state A to state B and continue after the condition action
that broadcast event F (step 3). First, its source, state A, is no longer active.
Second, if Stateflow were to allow the transition, state B would become the
second active child of the chart. This violates the second Stateflow axiom that
a state (or chart) with exclusive (OR) decomposition can never have more
than one active child. Consequently, early return logic is employed, and the
transition from state A to state B is halted.

In order to maintain primary axiomatic behavior in Stateflow diagrams,
Stateflow employs early return logic for event broadcasts in each of its action
types as follows:

3-40

Early Return Logic for Event Broadcasts

Action
Type Early Return Logic

Entry If the state is no longer active at the end of the event
broadcast, any remaining steps for entering a state are not
performed.

Exit If the state is no longer active at the end of the event
broadcast, any remaining exit actions or steps in
transitioning from state to state are not performed.

During If the state is no longer active at the end of the event
broadcast, any remaining steps in the execution of active
state are not performed.

Condition If the origin state of the inner or outer flow graph or parent
state of the default flow graph is no longer active at the end
of the event broadcast, the remaining steps in the execution
of the set of flow graphs are not performed.

Transition If the parent of the transition path is not active or if that
parent has an active child, the remaining transition actions
and state entry are not performed.

3-41

3 Stateflow Semantics

Semantic Examples
The following is a list of the examples provided to demonstrate the semantics
(behavior) of Stateflow charts.

“Transitions to and from Exclusive (OR) States Examples” on page
3-44

• “Transitioning from State to State with Events Example” on page 3-45

• “Transitioning from a Substate to a Substate with Events Example” on
page 3-48

“Condition Action Examples” on page 3-50

• “Condition Action Example” on page 3-50

• “Condition and Transition Actions Example” on page 3-51

• “Condition Actions in For Loop Construct Example” on page 3-53

• “Condition Actions to Broadcast Events to Parallel (AND) States Example”
on page 3-54

• “Cyclic Behavior to Avoid with Condition Actions Example” on page 3-54

“Default Transition Examples” on page 3-56

• “Default Transition in Exclusive (OR) Decomposition Example” on page
3-56

• “Default Transition to a Junction Example” on page 3-57

• “Default Transition and a History Junction Example” on page 3-58

• “Labeled Default Transitions Example” on page 3-59

“Inner Transition Examples” on page 3-62

• “Processing One Event in an Exclusive (OR) State” on page 3-62

• “Processing a Second Event in an Exclusive (OR) State” on page 3-63

• “Processing a Third Event in an Exclusive (OR) State” on page 3-64

3-42

Semantic Examples

• “Processing the First Event with an Inner Transition to a Connective
Junction” on page 3-65

• “Processing a Second Event with an Inner Transition to a Connective
Junction” on page 3-67

• “Inner Transition to a History Junction Example” on page 3-68

“Connective Junction Examples” on page 3-70

• “If-Then-Else Decision Construct Example” on page 3-71

• “Self-Loop Transition Example” on page 3-73

• “For Loop Construct Example” on page 3-74

• “Flow Diagram Notation Example” on page 3-75

• “Transitions from a Common Source to Multiple Destinations Example”
on page 3-77

• “Transitions from Multiple Sources to a Common Destination Example”
on page 3-78

• “Transitions from a Source to a Destination Based on a Common Event
Example” on page 3-79

“Event Actions in a Superstate Example” on page 3-82

“Parallel (AND) State Examples” on page 3-84

• “Event Broadcast State Action Example” on page 3-84

• “Event Broadcast Transition Action with a Nested Event Broadcast
Example” on page 3-87

• “Event Broadcast Condition Action Example” on page 3-91

Directed Event Broadcasting

• “Directed Event Broadcast Using Send Example” on page 3-96

• “Directed Event Broadcasting Using Qualified Event Names Example”
on page 3-98

3-43

3 Stateflow Semantics

Transitions to and from Exclusive (OR) States Examples
The following examples demonstrate the use of state-to-state transitions to
and from exclusive (OR) states in Stateflow:

• “Label Format for a State-to-State Transition Example” on page 3-44 —
Shows the semantics for a transition with a general label format.

• “Transitioning from State to State with Events Example” on page 3-45 —
Shows the behavior of a simple transition focusing on the implications of
whether states are active or inactive for handling events.

• “Transitioning from a Substate to a Substate with Events Example” on
page 3-48 — Shows the behavior of a transition from an OR substate to
an OR substate.

Label Format for a State-to-State Transition Example
The following example shows the general label format for a transition
entering a state:

Execution of the above transition occurs as follows:

1 When an event occurs, state S1 checks for an outgoing transition with
a matching event specified.

2 If a transition with a matching event is found, the condition for that
transition ([condition]) is evaluated.

3 If the condition condition evaluates to true, the condition action
condition_action ({condition_action}) is executed.

3-44

Transitions to and from Exclusive (OR) States Examples

4 If the destination state is determined to be a valid destination, the
transition is taken.

5 State S1 is exited.

6 The transition action transition_action is executed when the transition
is taken.

7 State S2 is entered.

Transitioning from State to State with Events Example
The following example shows the behavior of a simple transition focusing on
the implications of whether states are active or inactive.

Processing of a First Event
Initially the Stateflow diagram is asleep. State On and state Off are OR
states. State On is active. Event E_one occurs and awakens the Stateflow
diagram. Event E_one is processed from the root of the Stateflow diagram
down through the hierarchy of the Stateflow diagram:

1 The Stateflow diagram root checks to see if there is a valid transition as a
result of E_one. A valid transition from state On to state Off is detected.

2 State On exit actions (ExitOn()) execute and complete.

3 State On is marked inactive.

3-45

3 Stateflow Semantics

4 The event E_one is broadcast as the transition action.

This second event E_one is processed, but because neither state is active,
it has no effect. Had a valid transition been possible as a result of the
broadcast of E_one, the processing of the first broadcast of E_one would
be preempted by the second broadcast of E_one. See “Early Return Logic
for Event Broadcasts” on page 3-39.

5 State Off is marked active.

6 State Off entry actions (entOff()) execute and complete.

7 The Stateflow diagram goes back to sleep, waiting to be awakened by
another event.

This sequence completes the execution of the Stateflow diagram associated
with event E_one when state On is initially active.

Processing of a Second Event
Using the same example, what happens when the next event, E_one, occurs
while state Off is active?

Again, initially the Stateflow diagram is asleep. State Off is active. Event
E_one occurs and awakens the Stateflow diagram. Event E_one is processed
from the root of the Stateflow diagram down through the hierarchy of the
Stateflow diagram with the following steps:

1 The Stateflow diagram root checks to see if there is a valid transition as a
result of E_one.

3-46

Transitions to and from Exclusive (OR) States Examples

A valid transition from state Off to state On is detected.

2 State Off exit actions (exitOff()) execute and complete.

3 State Off is marked inactive.

4 State On is marked active.

5 State On entry actions (entOn()) execute and complete.

6 The Stateflow diagram goes back to sleep, waiting to be awakened by
another event.

This sequence completes the execution of the Stateflow diagram associated
with the second event E_one when state Off is initially active.

Processing of a Third Event
Using the same example, what happens when a third event, E_two, occurs?

Notice that the event E_two is not used explicitly in this example. However,
its occurrence (or the occurrence of any event) does result in behavior.
Initially, the Stateflow diagram is asleep and state On is active.

1 Event E_two occurs and awakens the Stateflow diagram.

Event E_two is processed from the root of the Stateflow diagram down
through the hierarchy of the Stateflow diagram.

3-47

3 Stateflow Semantics

2 The Stateflow diagram root checks to see if there is a valid transition as a
result of E_two. There is none.

3 State On during actions (durOn()) execute and complete.

4 The Stateflow diagram goes back to sleep, waiting to be awakened by
another event.

This sequence completes the execution of the Stateflow diagram associated
with event E_two when state On is initially active.

Transitioning from a Substate to a Substate with
Events Example
This example shows the behavior of a transition from an OR substate to an
OR substate.

Initially the Stateflow diagram is asleep. State A.A1 is active. Event E_one
occurs and awakens the Stateflow diagram. Condition C_one is true. Event
E_one is processed from the root of the Stateflow diagram down through the
hierarchy of the Stateflow diagram:

1 The Stateflow diagram root checks to see if there is a valid transition as a
result of E_one. There is a valid transition from state A.A1 to state B.B1.
(Condition C_one is true.)

2 State A during actions (durA()) execute and complete.

3-48

Transitions to and from Exclusive (OR) States Examples

3 State A.A1 exit actions (exitA1()) execute and complete.

4 State A.A1 is marked inactive.

5 State A exit actions (exitA()) execute and complete.

6 State A is marked inactive.

7 The transition action, A, is executed and completed.

8 State B is marked active.

9 State B entry actions (entB()) execute and complete.

10 State B.B1 is marked active.

11 State B.B1 entry actions (entB1()) execute and complete.

12 The Stateflow diagram goes back to sleep, waiting to be awakened by
another event.

This sequence completes the execution of this Stateflow diagram associated
with event E_one.

3-49

3 Stateflow Semantics

Condition Action Examples
The following examples demonstrate the use of condition actions in Stateflow:

• “Condition Action Example” on page 3-50 — Shows the behavior of a simple
condition action in a multiple segment transition.

• “Condition and Transition Actions Example” on page 3-51 — Shows
the behavior of a simple condition and transition action specified on a
transition from one exclusive (OR) state to another.

• “Condition Actions in For Loop Construct Example” on page 3-53 — Shows
the use of a condition action and connective junction to create a for loop
construct.

• “Condition Actions to Broadcast Events to Parallel (AND) States Example”
on page 3-54 — Shows the use of condition actions used to broadcast events
immediately to parallel (AND) states.

• “Cyclic Behavior to Avoid with Condition Actions Example” on page 3-54 —
Shows a notation to avoid when using event broadcasts as condition actions
because the semantics result in cyclic behavior.

Condition Action Example
This example shows the behavior of a simple condition action in a multiple
segment transition.

3-50

Condition Action Examples

Initially the Stateflow diagram is asleep. State A is active. Event E_one
occurs and awakens the Stateflow diagram. Conditions C_one and C_two are
false. Event E_one is processed from the root of the Stateflow diagram down
through the hierarchy of the Stateflow diagram:

1 The Stateflow diagram root checks to see if there is a valid transition as
a result of E_one. A valid transition segment from state A to a connective
junction is detected. The condition action A_one is detected on the valid
transition segment and is immediately executed and completed. State
A is still active.

2 Because the conditions on the transition segments to possible destinations
are false, none of the complete transitions is valid.

3 State A during actions (durA()) execute and complete.

State A remains active.

4 The Stateflow diagram goes back to sleep, waiting to be awakened by
another event.

This sequence completes the execution of this Stateflow diagram associated
with event E_one when state A is initially active.

Condition and Transition Actions Example
This example shows the behavior of a simple condition and transition action
specified on a transition from one exclusive (OR) state to another.

3-51

3 Stateflow Semantics

Initially the Stateflow diagram is asleep. State A is active. Event E_one
occurs and awakens the Stateflow diagram. Condition C_one is true. Event
E_one is processed from the root of the Stateflow diagram down through the
hierarchy of the Stateflow diagram:

1 The Stateflow diagram root checks to see if there is a valid transition as
a result of E_one. A valid transition from state A to state B is detected.
The condition C_one is true. The condition action A_one is detected on
the valid transition and is immediately executed and completed. State
A is still active.

2 State A exit actions (ExitA()) execute and complete.

3 State A is marked inactive.

4 The transition action A_two is executed and completed.

5 State B is marked active.

6 State B entry actions (entB()) execute and complete.

7 The Stateflow diagram goes back to sleep, waiting to be awakened by
another event.

This sequence completes the execution of this Stateflow diagram associated
with event E_one when state A is initially active.

3-52

Condition Action Examples

Condition Actions in For Loop Construct Example
Condition actions and connective junctions are used to design a for loop
construct. This example shows the use of a condition action and connective
junction to create a for loop construct.

See “For Loop Construct Example” on page 3-74 to see the behavior of this
example.

3-53

3 Stateflow Semantics

Condition Actions to Broadcast Events to Parallel
(AND) States Example
This example shows the use of condition actions used to broadcast events
immediately to parallel (AND) states.

See “Event Broadcast Condition Action Example” on page 3-91 to see the
behavior of this example.

Cyclic Behavior to Avoid with Condition Actions
Example
This example shows a notation to avoid when using event broadcasts as
condition actions because the semantics result in cyclic behavior.

3-54

Condition Action Examples

Initially the Stateflow diagram is asleep. State On is active. Event E_one
occurs and awakens the Stateflow diagram. Event E_one is processed from
the root of the Stateflow diagram down through the hierarchy of the Stateflow
diagram:

1 The Stateflow diagram root checks to see if there is a valid transition as a
result of E_one.

A valid transition from state On to state Off is detected.

2 The condition action on the transition broadcasts event E_one.

3 Event E_one is detected on the valid transition, which is immediately
executed. State On is still active.

4 The broadcast of event E_one awakens the Stateflow diagram a second time.

5 Go to step 1.

Steps 1 to 5 continue to execute in a cyclical manner. The transition label
indicating a trigger on the same event as the condition action broadcast event
results in unrecoverable cyclic behavior. This sequence never completes when
event E_one is broadcast and state On is active.

3-55

3 Stateflow Semantics

Default Transition Examples
The following examples demonstrate the use of default transitions in
Stateflow:

• “Default Transition in Exclusive (OR) Decomposition Example” on page
3-56 — Shows the behavior of a transition from an OR state to a superstate
with exclusive (OR) decomposition, where a default transition to a substate
is defined.

• “Default Transition to a Junction Example” on page 3-57 — Shows the
behavior of a default transition to a connective junction.

• “Default Transition and a History Junction Example” on page 3-58 —
Shows the behavior of a superstate with a default transition and a history
junction.

• “Labeled Default Transitions Example” on page 3-59 — Shows the use
of a default transition with a label.

Default Transition in Exclusive (OR) Decomposition
Example
This example shows a transition from an OR state to a superstate with
exclusive (OR) decomposition, where a default transition to a substate is
defined.

Initially the Stateflow diagram is asleep. State A is active. Event E_one occurs
and awakens the Stateflow diagram. Event E_one is processed from the root of
the Stateflow diagram down through the hierarchy of the Stateflow diagram:

3-56

Default Transition Examples

1 The Stateflow diagram root checks to see if there is a valid transition as a
result of E_one. There is a valid transition from state A to superstate B.

2 State A exit actions (exitA()) execute and complete.

3 State A is marked inactive.

4 The transition action, A, is executed and completed.

5 State B is marked active.

6 State B entry actions (entB()) execute and complete.

7 State B detects a valid default transition to state B.B1.

8 State B.B1 is marked active.

9 State B.B1 entry actions (entB1()) execute and complete.

10 The Stateflow diagram goes back to sleep, waiting to be awakened by
another event.

This sequence completes the execution of this Stateflow diagram associated
with event E_one when state A is initially active.

Default Transition to a Junction Example
The following example shows the behavior of a default transition to a
connective junction.

3-57

3 Stateflow Semantics

Initially the Stateflow diagram is asleep. State B.B1 is active. An event
occurs and awakens the Stateflow diagram. Condition [C_two] is true. The
event is processed from the root of the Stateflow diagram down through the
hierarchy of the Stateflow diagram:

1 State B checks to see if there is a valid transition as a result of any event.
There is none.

2 State B1 during actions (durB1()) execute and complete.

This sequence completes the execution of this Stateflow diagram associated
with the occurrence of any event.

Default Transition and a History Junction Example
This example shows the behavior of a superstate with a default transition
and a history junction.

Initially the Stateflow diagram is asleep. State A is active. There is a history
junction and state B4 was the last active substate of superstate B. Event
E_one occurs and awakens the Stateflow diagram. Event E_one is processed
from the root of the Stateflow diagram down through the hierarchy of the
Stateflow diagram:

3-58

Default Transition Examples

1 The Stateflow diagram root checks to see if there is a valid transition as a
result of E_one.

There is a valid transition from state A to superstate B.

2 State A exit actions (exitA()) execute and complete.

3 State A is marked inactive.

4 State B is marked active.

5 State B entry actions (entB()) execute and complete.

6 State B uses the history junction to determine the substate destination of
the transition into the superstate.

The history junction indicates that substate B.B4 was the last active
substate, which becomes the destination of the transition.

7 State B.B4 is marked active.

8 State B.B4 entry actions (entB4()) execute and complete.

9 The Stateflow diagram goes back to sleep, waiting to be awakened by
another event.

This sequence completes the execution of this Stateflow diagram associated
with event E_one.

Labeled Default Transitions Example
This example shows the use of a default transition with a label.

3-59

3 Stateflow Semantics

Initially the Stateflow diagram is asleep. State A is active. Event E_one
occurs, awakening the Stateflow diagram. Event E_one is processed from the
root of the Stateflow diagram down through the hierarchy of the Stateflow
diagram with the following steps:

1 The Stateflow diagram root checks to see if there is a valid transition as a
result of E_one.

There is a valid transition from state A to superstate B. The transition is
valid if event E_one or E_two occurs.

2 State A exit actions execute and complete (exitA()).

3 State A is marked inactive.

4 State B is marked active.

5 State B entry actions execute and complete (entB()).

6 State B detects a valid default transition to state B.B1. The default
transition is valid as a result of E_one.

7 State B.B1 is marked active.

8 State B.B1 entry actions execute and complete (entB1()).

3-60

Default Transition Examples

9 The Stateflow diagram goes back to sleep, waiting to be awakened by
another event.

This sequence completes the execution of this Stateflow diagram associated
with event E_one when state A is initially active.

3-61

3 Stateflow Semantics

Inner Transition Examples
The following examples demonstrate the use of inner transitions in Stateflow:

• “Processing Events with an Inner Transition in an Exclusive (OR) State
Example” on page 3-62 — Shows what happens when processing repeated
events using an inner transition in an exclusive (OR) state.

• “Processing Events with an Inner Transition to a Connective Junction
Example” on page 3-65 — Shows the behavior of handling repeated events
using an inner transition to a connective junction.

• “Inner Transition to a History Junction Example” on page 3-68 — Shows
the behavior of an inner transition to a history junction.

Processing Events with an Inner Transition in an
Exclusive (OR) State Example
This example shows what happens when processing three events using an
inner transition in an exclusive (OR) state.

Processing One Event in an Exclusive (OR) State
This example shows the behavior of an inner transition.

Initially the Stateflow diagram is asleep. State A is active. Event E_one
occurs and awakens the Stateflow diagram. Condition [C_one] is false. Event
E_one is processed from the root of the Stateflow diagram down through the
hierarchy of the Stateflow diagram:

3-62

Inner Transition Examples

1 The Stateflow diagram root checks to see if there is a valid transition as
a result of E_one. A potentially valid transition from state A to state B is
detected. However, the transition is not valid, because [C_one] is false.

2 State A during actions (durA()) execute and complete.

3 State A checks its children for a valid transition and detects a valid inner
transition.

4 State A remains active. The inner transition action A_two is executed and
completed. Because it is an inner transition, state A’s exit and entry actions
are not executed.

5 The Stateflow diagram goes back to sleep, waiting to be awakened by
another event.

This sequence completes the execution of this Stateflow diagram associated
with event E_one.

Processing a Second Event in an Exclusive (OR) State
Using the previous example, this example shows what happens when a
second event E_one occurs.

Initially the Stateflow diagram is asleep. State A is still active. Event E_one
occurs and awakens the Stateflow diagram. Condition [C_one] is true. Event
E_one is processed from the root of the Stateflow diagram down through the
hierarchy of the Stateflow diagram with the following steps:

3-63

3 Stateflow Semantics

1 The Stateflow diagram root checks to see if there is a valid transition as a
result of E_one.

The transition from state A to state B is now valid because [C_one] is true.

2 State A exit actions (exitA()) execute and complete.

3 State A is marked inactive.

4 The transition action A_one is executed and completed.

5 State B is marked active.

6 State B entry actions (entB()) execute and complete.

7 The Stateflow diagram goes back to sleep, waiting to be awakened by
another event.

This sequence completes the execution of this Stateflow diagram associated
with event E_one.

Processing a Third Event in an Exclusive (OR) State
Using the previous example, this example shows what happens when a third
event, E_two, occurs.

Initially the Stateflow diagram is asleep. State B is now active. Event E_two
occurs and awakens the Stateflow diagram. Condition [C_two] is false. Event

3-64

Inner Transition Examples

E_two is processed from the root of the Stateflow diagram down through the
hierarchy of the Stateflow diagram:

1 The Stateflow diagram root checks to see if there is a valid transition as a
result of E_two.

A potentially valid transition from state B to state A is detected. The
transition is not valid because [C_two] is false. However, active state B has
a valid self-loop transition.

2 State B exit actions (exitB()) execute and complete.

3 State B is marked inactive.

4 The self-loop transition action, A_four, executes and completes.

5 State B is marked active.

6 State B entry actions (entB()) execute and complete.

7 The Stateflow diagram goes back to sleep, waiting to be awakened by
another event.

This sequence completes the execution of this Stateflow diagram associated
with event E_two. This example shows the difference in behavior between
inner and self-loop transitions.

Processing Events with an Inner Transition to a
Connective Junction Example
This example shows the behavior of handling repeated events using an inner
transition to a connective junction.

Processing the First Event with an Inner Transition to a
Connective Junction
This example shows the behavior of an inner transition to a connective
junction for an initial event.

3-65

3 Stateflow Semantics

Initially the Stateflow diagram is asleep. State A1 is active. Event E_one
occurs and awakens the Stateflow diagram. Condition [C_two] is true. Event
E_one is processed from the root of the Stateflow diagram down through the
hierarchy of the Stateflow diagram:

1 The Stateflow diagram root checks to see if there is a valid transition at the
root level as a result of E_one. There is no valid transition.

2 State A during actions (durA()) execute and complete.

3 State A checks itself for valid transitions and detects that there is a valid
inner transition to a connective junction.

The conditions are evaluated to determine whether one of the transitions
is valid. The segments labeled with a condition are evaluated before the
unlabeled segment. The evaluation starts from a twelve o’clock position
on the junction and progresses in a clockwise manner. Because [C_two] is
true, the inner transition to the junction and then to state A.A2 is valid.

4 State A.A1 exit actions (exitA1()) execute and complete.

5 State A.A1 is marked inactive.

6 State A.A2 is marked active.

3-66

Inner Transition Examples

7 State A.A2 entry actions (entA2()) execute and complete.

8 The Stateflow diagram goes back to sleep, waiting to be awakened by
another event.

This sequence completes the execution of this Stateflow diagram associated
with event E_one when condition C_two is true.

Processing a Second Event with an Inner Transition to a
Connective Junction
Continuing the previous example, this example shows the behavior of an
inner transition to a junction when a second event E_one occurs.

Initially the Stateflow diagram is asleep. State A2 is active. Event E_one
occurs and awakens the Stateflow diagram. Neither [C_one] nor [C_two] is
true. Event E_one is processed from the root of the Stateflow diagram down
through the hierarchy of the Stateflow diagram:

1 The Stateflow diagram root checks to see if there is a valid transition at the
root level as a result of E_one. There is no valid transition.

2 State A during actions (durA()) execute and complete.

3-67

3 Stateflow Semantics

3 State A checks itself for valid transitions and detects a valid inner
transition to a connective junction. The segments labeled with a condition
are evaluated before the unlabeled segment. The evaluation starts from
a twelve o’clock position on the junction and progresses in a clockwise
manner. Because neither [C_one] nor [C_two] is true, the unlabeled
transition segment is evaluated and is determined to be valid. The full
transition from the inner transition to state A.A3 is valid.

4 State A.A2 exit actions (exitA2()) execute and complete.

5 State A.A2 is marked inactive.

6 State A.A3 is marked active.

7 State A.A3 entry actions (entA3()) execute and complete.

8 The Stateflow diagram goes back to sleep, waiting to be awakened by
another event.

This sequence completes the execution of this Stateflow diagram associated
with event E_one when neither [C_one] nor [C_two] is true.

Inner Transition to a History Junction Example
This example shows the behavior of an inner transition to a history junction.

3-68

Inner Transition Examples

Initially the Stateflow diagram is asleep. State A.A1 is active. There is
history information because superstate A is active. Event E_one occurs and
awakens the Stateflow diagram. Event E_one is processed from the root of the
Stateflow diagram down through the hierarchy of the Stateflow diagram:

1 The Stateflow diagram root checks to see if there is a valid transition as
a result of E_one. There is no valid transition.

2 State A during actions execute and complete.

3 State A checks itself for valid transitions and detects that there is a valid
inner transition to a history junction. According to the behavior of history
junctions, the last active state, A.A1, is the destination state.

4 State A.A1 exit actions execute and complete.

5 State A.A1 is marked inactive.

6 State A.A1 is marked active.

7 State A.A1 entry actions execute and complete.

8 The Stateflow diagram goes back to sleep, waiting to be awakened by
another event.

This sequence completes the execution of this Stateflow diagram associated
with event E_one when there is an inner transition to a history junction and
state A.A1 is active.

3-69

3 Stateflow Semantics

Connective Junction Examples
The following examples demonstrate the use of connective junctions in
Stateflow:

• “Label Format for Transition Segments Example” on page 3-70 — Shows
the general label format for a transition segment.

• “If-Then-Else Decision Construct Example” on page 3-71 — Shows the
behavior of an if-then-else decision construct using a connective junction.

• “Self-Loop Transition Example” on page 3-73 — Shows the behavior of a
self-loop transition using a connective junction.

• “For Loop Construct Example” on page 3-74 — Shows the behavior of a
for loop using a connective junction.

• “Flow Diagram Notation Example” on page 3-75 — Shows the behavior of a
flow notation in a Stateflow diagram.

• “Transitions from a Common Source to Multiple Destinations Example” on
page 3-77 — Shows the behavior of transitions from a common source to
multiple conditional destinations using a connective junction.

• “Transitions from Multiple Sources to a Common Destination Example” on
page 3-78 — Shows the behavior of transitions from multiple sources to a
single destination using a connective junction.

• “Transitions from a Source to a Destination Based on a Common Event
Example” on page 3-79 — Shows the behavior of transitions from multiple
sources to a single destination based on the same event using a connective
junction.

• “Backtracking Behavior in Flow Graphs Example” on page 3-80 — Shows
the behavior of transitions with junctions that force backtracking behavior
in flow graphs.

Label Format for Transition Segments Example
The general label format for a transition segment entering a junction is the
same as for transitions entering states, as shown in the following example:

3-70

Connective Junction Examples

Execution of a transition in this example occurs as follows:

1 When an event occurs, state S1 is checked for an outgoing transition with
a matching event specified.

2 If a transition with a matching event is found, the transition condition for
that transition (in brackets) is evaluated.

3 If condition_1 evaluates to true, the condition action condition_action
(in braces) is executed.

4 The outgoing transitions from the junction are checked for a valid
transition. Since condition_2 is true, a valid state-to-state transition (S1
to S2) is found.

5 State S1 is exited (this includes the execution of S1’s exit action).

6 The transition action transition_action is executed.

7 The completed state-to-state transition (S1 to S2) is taken.

8 State S2 is entered (this includes the execution of S2’s entry action).

If-Then-Else Decision Construct Example
This example shows the behavior of an if-then-else decision construct.

3-71

3 Stateflow Semantics

Initially the Stateflow diagram is asleep. State A is active. Event E_one
occurs and awakens the Stateflow diagram. Condition [C_two] is true. Event
E_one is processed from the root of the Stateflow diagram down through the
hierarchy of the Stateflow diagram:

1 The Stateflow diagram root checks to see if there is a valid transition as a
result of E_one.

There is a valid transition segment from state A to the connective junction.
The transition segments beginning from a twelve o’clock position on the
connective junction are evaluated for validity. The first transition segment,
labeled with condition [C_one], is not valid. The next transition segment,
labeled with the condition [C_two], is valid. The complete transition from
state A to state C is valid.

2 State A exit actions (exitA()) execute and complete.

3 State A is marked inactive.

4 State C is marked active.

5 State C entry actions (entC()) execute and complete.

3-72

Connective Junction Examples

6 The Stateflow diagram goes back to sleep, waiting to be awakened by
another event.

This sequence completes the execution of this Stateflow diagram associated
with event E_one.

Self-Loop Transition Example
This example shows the behavior of a self-loop transition using a connective
junction.

Initially the Stateflow diagram is asleep. State A is active. Event E_one
occurs and awakens the Stateflow diagram. Condition [C_one] is false. Event
E_one is processed from the root of the Stateflow diagram down through the
hierarchy of the Stateflow diagram:

1 The Stateflow diagram root checks to see if there is a valid transition as
a result of E_one. There is a valid transition segment from state A to the
connective junction. The transition segment labeled with a condition and
action is evaluated for validity. Because the condition [C_one] is not valid,
the complete transition from state A to state B is not valid. The transition
segment from the connective junction back to state A is valid.

2 State A exit actions (exitA()) execute and complete.

3 State A is marked inactive.

4 The transition action A_two is executed and completed.

5 State A is marked active.

3-73

3 Stateflow Semantics

6 State A entry actions (entA()) execute and complete.

7 The Stateflow diagram goes back to sleep, waiting to be awakened by
another event.

This sequence completes the execution of this Stateflow diagram associated
with event E_one.

For Loop Construct Example
This example shows the behavior of a for loop using a connective junction.

Initially the Stateflow diagram is asleep. State A is active. Event E_one occurs
and awakens the Stateflow diagram. Event E_one is processed from the root of
the Stateflow diagram down through the hierarchy of the Stateflow diagram:

1 The Stateflow diagram root checks to see if there is a valid transition
as a result of E_one. There is a valid transition segment from state A to
the connective junction. The transition segment condition action, i = 0,
is executed and completed. Of the two transition segments leaving the
connective junction, the transition segment that is a self-loop back to the
connective junction is evaluated next for validity. That segment takes
priority in evaluation because it has a condition specified, whereas the
other segment is unlabeled.

2 The condition [i < 10] is evaluated as true. The condition actions i++ and
a call to func1 are executed and completed until the condition becomes
false. A connective junction is not a final destination; thus the transition
destination remains to be determined.

3-74

Connective Junction Examples

3 The unconditional segment to state B is now valid. The complete transition
from state A to state B is valid.

4 State A exit actions (exitA()) execute and complete.

5 State A is marked inactive.

6 State B is marked active.

7 State B entry actions (entB()) execute and complete.

8 The Stateflow diagram goes back to sleep, waiting to be awakened by
another event.

This sequence completes the execution of this Stateflow diagram associated
with event E_one.

Flow Diagram Notation Example
This example shows the behavior of a Stateflow diagram that uses flow
notation.

Initially the Stateflow diagram is asleep. State A.A1 is active. The condition
[C_one()] is initially true. Event E_one occurs and awakens the Stateflow

3-75

3 Stateflow Semantics

diagram. Event E_one is processed from the root of the Stateflow diagram
down through the hierarchy of the Stateflow diagram:

1 The Stateflow diagram root checks to see if there is a valid transition as
a result of E_one. There is no valid transition.

2 State A checks itself for valid transitions and detects a valid inner
transition to a connective junction.

3 The next possible segments of the transition are evaluated. There is only
one outgoing transition and it has a condition action defined. The condition
action is executed and completed.

4 The next possible segments are evaluated. There are two outgoing
transitions; one is a conditional self-loop transition and the other is an
unconditional transition segment. The conditional transition segment
takes precedence. The condition [C_one()] is tested and is true; the
self-loop transition is taken. Since a final transition destination has not
been reached, this self-loop continues until [C_one()] is false.

Assume that after five iterations [C_one()] is false.

5 The next possible transition segment (to the next connective junction) is
evaluated. It is an unconditional transition segment with a condition
action. The transition segment is taken and the condition action,
{d=my_func()}, is executed and completed. The returned value of d is 84.

6 The next possible transition segment is evaluated. There are three
possible outgoing transition segments to consider. Two are conditional;
one is unconditional. The segment labeled with the condition [d<100]
is evaluated first based on the geometry of the two outgoing conditional
transition segments. Because the return value of d is 84, the condition
[d<100] is true and this transition (to the destination state A.A1) is valid.

7 State A.A1 exit actions (exitA1()) execute and complete.

8 State A.A1 is marked inactive.

9 State A.A1 is marked active.

10 State A.A1 entry actions (entA1()) execute and complete.

3-76

Connective Junction Examples

11 The Stateflow diagram goes back to sleep, waiting to be awakened by
another event.

This sequence completes the execution of this Stateflow diagram associated
with event E_one.

Transitions from a Common Source to Multiple
Destinations Example
This example shows the behavior of transitions from a common source to
multiple conditional destinations using a connective junction.

Initially the Stateflow diagram is asleep. State A is active. Event E_two occurs
and awakens the Stateflow diagram. Event E_two is processed from the root of
the Stateflow diagram down through the hierarchy of the Stateflow diagram:

1 The Stateflow diagram root checks to see if there is a valid transition as
a result of E_two. There is a valid transition segment from state A to the
connective junction. Given that the transition segments are equivalently
labeled, evaluation begins from a twelve o’clock position on the connective
junction and progresses clockwise. The first transition segment, labeled
with event E_one, is not valid. The next transition segment, labeled with
event E_two, is valid. The complete transition from state A to state C is
valid.

2 State A exit actions (exitA()) execute and complete.

3 State A is marked inactive.

3-77

3 Stateflow Semantics

4 State C is marked active.

5 State C entry actions (entC()) execute and complete.

6 The Stateflow diagram goes back to sleep, waiting to be awakened by
another event.

This sequence completes the execution of this Stateflow diagram associated
with event E_two.

Transitions from Multiple Sources to a Common
Destination Example
This example shows the behavior of transitions from multiple sources to a
single destination using a connective junction.

Initially the Stateflow diagram is asleep. State A is active. Event E_one occurs
and awakens the Stateflow diagram. Event E_one is processed from the root of
the Stateflow diagram down through the hierarchy of the Stateflow diagram:

1 The Stateflow diagram root checks to see if there is a valid transition as
a result of E_one. There is a valid transition segment from state A to the
connective junction and from the junction to state C.

2 State A exit actions (exitA()) execute and complete.

3 State A is marked inactive.

4 State C is marked active.

3-78

Connective Junction Examples

5 State C entry actions (entC()) execute and complete.

6 The Stateflow diagram goes back to sleep, waiting to be awakened by
another event.

This sequence completes the execution of this Stateflow diagram associated
with event E_one.

Transitions from a Source to a Destination Based on
a Common Event Example
This example shows the behavior of transitions from multiple sources to a
single destination based on the same event using a connective junction.

Initially the Stateflow diagram is asleep. State B is active. Event E_one occurs
and awakens the Stateflow diagram. Event E_one is processed from the root of
the Stateflow diagram down through the hierarchy of the Stateflow diagram:

1 The Stateflow diagram root checks to see if there is a valid transition as
a result of E_one. There is a valid transition segment from state B to the
connective junction and from the junction to state C.

2 State B exit actions (exitB()) execute and complete.

3 State B is marked inactive.

4 State C is marked active.

5 State C entry actions (entC()) execute and complete.

3-79

3 Stateflow Semantics

6 The Stateflow diagram goes back to sleep, waiting to be awakened by
another event.

This sequence completes the execution of this Stateflow diagram associated
with event E_one.

Backtracking Behavior in Flow Graphs Example
This example shows the behavior of transitions with junctions that force
backtracking behavior in flow graphs.

Initially, state A is active and conditions c1, c2, and c3 are true:

1 The Stateflow diagram root checks to see if there is a valid transition from
state A.

There is a valid transition segment marked with the condition c1 from
state A to a connective junction.

2 Condition c1 is true, therefore action a1 is executed.

3 Condition c3 is true, therefore action a3 is executed.

4 Condition c4 is not true, therefore control flow is backtracked to state A.

5 The Stateflow diagram root checks to see if there is another valid transition
from state A.

There is a valid transition segment marked with the condition c2 from
state A to a connective junction.

6 Condition c2 is true, therefore action a2 is executed.

3-80

Connective Junction Examples

7 Condition c3 is true, therefore action a3 is executed.

8 Condition c4 is not true, therefore control flow is backtracked to state A.

9 The Stateflow chart goes to sleep.

The preceding example shows the unanticipated behavior of executing both
actions a1 and a2 and executing action a3 twice. To resolve this problem,
consider the following.

In this example, the previous example is amended with two terminating
junctions that allow flow to terminate if either c3 or c4 is not true. This leaves
state A active without taking any unnecessary actions.

3-81

3 Stateflow Semantics

Event Actions in a Superstate Example
The following example demonstrates the use of event actions in a superstate:

Initially the Stateflow diagram is asleep. State A.A1 is active. Event E_three
occurs and awakens the Stateflow diagram. Event E_three is processed from
the root of the Stateflow diagram down through the hierarchy of the Stateflow
diagram:

1 The Stateflow diagram root checks to see if there is a valid transition as a
result of E_three. There is no valid transition.

2 State A during actions (durA()) execute and complete.

3 State A executes and completes the on event E_three action (A_one).

4 State A checks its children for valid transitions. There are no valid
transitions.

5 State A1 during actions (durA1()) execute and complete.

3-82

Event Actions in a Superstate Example

6 The Stateflow diagram goes back to sleep, waiting to be awakened by
another event.

This sequence completes the execution of this Stateflow diagram associated
with event E_three.

3-83

3 Stateflow Semantics

Parallel (AND) State Examples
The following examples demonstrate the use of parallel (AND) states:

• “Event Broadcast State Action Example” on page 3-84 — Shows the
behavior of event broadcast actions in parallel states.

• “Event Broadcast Transition Action with a Nested Event Broadcast
Example” on page 3-87 — Shows the behavior of an event broadcast
transition action that includes a nested event broadcast in a parallel state.

• “Event Broadcast Condition Action Example” on page 3-91 — Shows the
behavior of a condition action event broadcast in a parallel (AND) state.

Event Broadcast State Action Example
This example shows the behavior of event broadcast actions in parallel states.

Initially the Stateflow diagram is asleep. Parallel substates A.A1.A1a and
A.A2.A2a are active. Event E_one occurs and awakens the Stateflow diagram.

3-84

Parallel (AND) State Examples

Event E_one is processed from the root of the Stateflow diagram down through
the hierarchy of the Stateflow diagram:

1 The Stateflow diagram root checks to see if there is a valid transition at the
root level as a result of E_one. There is no valid transition.

2 State A during actions (durA()) execute and complete.

3 State A’s children are parallel (AND) states. They are evaluated and
executed from left to right and top to bottom. State A.A1 is evaluated first.
State A.A1 during actions (durA1()) execute and complete. State A.A1
executes and completes the on E_one action and broadcasts event E_two.
during and on event_name actions are processed based on their order of
appearance in the state label:

a The broadcast of event E_two awakens the Stateflow diagram a second
time. The Stateflow diagram root checks to see if there is a valid
transition as a result of E_two. There is no valid transition.

b State A during actions (durA()) execute and complete.

c State A checks its children for valid transitions. There are no valid
transitions.

d State A’ s children are evaluated starting with state A.A1. State A.A1
during actions (durA1()) execute and complete. State A.A1 is evaluated
for valid transitions. There are no valid transitions as a result of E_two
within state A1.

e State A1a during actions (durA1a()) execute.

f State A.A2 is evaluated. State A.A2 during actions (durA2()) execute
and complete. State A.A2 checks for valid transitions. State A.A2 has
a valid transition as a result of E_two from state A.A2.A2a to state
A.A2.A2b.

g State A.A2.A2a exit actions (exitA2a()) execute and complete.

h State A.A2.A2a is marked inactive.

i State A.A2.A2b is marked active.

j State A.A2.A2b entry actions (entA2b()) execute and complete. The
Stateflow diagram activity now looks like this:

3-85

3 Stateflow Semantics

4 State A.A1.A1a executes and completes exit actions (exitA1a).

5 The processing of E_one continues once the on event broadcast of E_two
has been processed. State A.A1 checks for any valid transitions as a result
of event E_one. There is a valid transition from state A.A1.A1a to state
A.A1.A1b.

6 State A.A1.A1a is marked inactive.

7 State A.A1.A1b entry actions (entA1b()) execute and complete.

8 State A.A1.A1b is marked active.

9 Parallel state A.A2 is evaluated next. State A.A2 during actions (durA2())
execute and complete. There are no valid transitions as a result of E_one.

10 State A.A2.A2b during actions (durA2b()) execute and complete.

State A.A2.A2b is now active as a result of the processing of the on event
broadcast of E_two.

3-86

Parallel (AND) State Examples

11 The Stateflow diagram goes back to sleep, waiting to be awakened by
another event.

This sequence completes the execution of this Stateflow diagram associated
with event E_one and the on event broadcast to a parallel state of event
E_two. The final Stateflow diagram activity looks like this.

Event Broadcast Transition Action with a Nested
Event Broadcast Example
This example shows the behavior of an event broadcast transition action that
includes a nested event broadcast in a parallel state.

3-87

3 Stateflow Semantics

Start of Event E_one Processing
Initially the Stateflow diagram is asleep. Parallel substates A.A1.A1a and
A.A2.A2a are active. Event E_one occurs and awakens the Stateflow diagram.
Event E_one is processed from the root of the Stateflow diagram down through
the hierarchy of the Stateflow diagram:

1 The Stateflow diagram root checks to see if there is a valid transition as
a result of E_one. There is no valid transition.

2 State A during actions (durA()) execute and complete.

3 State A’s children are parallel (AND) states. They are evaluated and
executed from left to right and top to bottom. State A.A1 is evaluated first.
State A.A1during actions (durA1()) execute and complete.

4 State A.A1 checks for any valid transitions as a result of event E_one.
There is a valid transition from state A.A1.A1a to state A.A1.A1b.

3-88

Parallel (AND) State Examples

5 State A.A1.A1a executes and completes exit actions (exitA1a).

6 State A.A1.A1a is marked inactive.

Event E_two Preempts E_one

7 Transition action generating event E_two is executed and completed:

a The transition from state A1a to state A1b (as a result of event E_one) is
now preempted by the broadcast of event E_two.

b The broadcast of event E_two awakens the Stateflow diagram a second
time. The Stateflow diagram root checks to see if there is a valid
transition as a result of E_two. There is no valid transition.

c State A during actions (durA()) execute and complete.

d State A’ s children are evaluated starting with state A.A1. State
A.A1during actions (durA1()) execute and complete. State A.A1 is
evaluated for valid transitions. There are no valid transitions as a result
of E_two within state A1.

e State A.A2 is evaluated. State A.A2 during actions (durA2()) execute and
complete. State A.A2 checks for valid transitions. State A.A2 has a valid
transition as a result of E_two from state A.A2.A2a to state A.A2.A2b.

f State A.A2.A2a exit actions (exitA2a()) execute and complete.

g State A.A2.A2a is marked inactive.

h State A.A2.A2b is marked active.

i State A.A2.A2b entry actions (entA2b()) execute and complete.

Event E_two Processing Ends
The Stateflow diagram activity now looks like this.

3-89

3 Stateflow Semantics

Event E_one Processing Resumes

8 State A.A1.A1b is marked active.

9 State A.A1.A1b entry actions (entA1b()) execute and complete.

10 Parallel state A.A2 is evaluated next. State A.A2 during actions (durA2())
execute and complete. There are no valid transitions as a result of E_one.

11 State A.A2.A2b during actions (durA2b()) execute and complete.

State A.A2.A2b is now active as a result of the processing of the transition
action event broadcast of E_two.

12 The Stateflow diagram goes back to sleep, waiting to be awakened by
another event.

3-90

Parallel (AND) State Examples

This sequence completes the execution of this Stateflow diagram associated
with event E_one and the transition action event broadcast to a parallel state
of event E_two. The final Stateflow diagram activity now looks like this.

Event Broadcast Condition Action Example
This example shows the behavior of a condition action event broadcast in a
parallel (AND) state.

3-91

3 Stateflow Semantics

Initially the Stateflow diagram is asleep. Parallel substates A.A1.A1a and
A.A2.A2a are active. Event E_one occurs and awakens the Stateflow diagram.
Event E_one is processed from the root of the Stateflow diagram down through
the hierarchy of the Stateflow diagram:

1 The Stateflow diagram root checks to see if there is a valid transition as
a result of E_one. There is no valid transition.

2 State A during actions (durA()) execute and complete.

3 State A’s children are parallel (AND) states. Parallel states are evaluated
and executed from top to bottom. In the case of a tie, they are evaluated
from left to right. State A.A1 is evaluated first. State A.A1 during actions
(durA1()) execute and complete.

4 State A.A1 checks for any valid transitions as a result of event E_one.
There is a valid transition from state A.A1.A1a to state A.A1.A1b. There is
also a valid condition action. The condition action event broadcast of E_two
is executed and completed. State A.A1.A1a is still active:

3-92

Parallel (AND) State Examples

a The broadcast of event E_two awakens the Stateflow diagram a second
time. The Stateflow diagram root checks to see if there is a valid
transition as a result of E_two. There is no valid transition.

b State A during actions (durA()) execute and complete.

c State A’ s children are evaluated starting with state A.A1. State A.A1
during actions (durA1()) execute and complete. State A.A1 is evaluated
for valid transitions. There are no valid transitions as a result of E_two
within state A1.

d State A1a during actions (durA1a()) execute.

e State A.A2 is evaluated. State A.A2 during actions (durA2()) execute
and complete. State A.A2 checks for valid transitions. State A.A2 has
a valid transition as a result of E_two from state A.A2.A2a to state
A.A2.A2b.

f State A.A2.A2a exit actions (exitA2a()) execute and complete.

g State A.A2.A2a is marked inactive.

h State A.A2.A2b is marked active.

i State A.A2.A2b entry actions (entA2b()) execute and complete.

3-93

3 Stateflow Semantics

5 State A.A1.A1a executes and completes exit actions (exitA1a).

6 State A.A1.A1a is marked inactive.

7 State A.A1.A1b entry actions (entA1b()) execute and complete.

8 State A.A1.A1b is marked active.

9 Parallel state A.A2 is evaluated next. State A.A2 during actions (durA2())
execute and complete. There are no valid transitions as a result of E_one.

10 State A.A2.A2b during actions (durA2b()) execute and complete.

State A.A2.A2b is now active as a result of the processing of the condition
action event broadcast of E_two.

11 The Stateflow diagram goes back to sleep, waiting to be awakened by
another event.

The Stateflow diagram activity now looks like this.

3-94

Parallel (AND) State Examples

This sequence completes the execution of this Stateflow diagram associated
with event E_one and the condition action event broadcast to a parallel state
of event E_two. The final Stateflow diagram activity now looks like this.

3-95

3 Stateflow Semantics

Directed Event Broadcasting Examples
The following examples demonstrate the use of directed event broadcasting:

• “Directed Event Broadcast Using Send Example” on page 3-96 — Shows
the behavior of directed event broadcast using the send function in a
transition action

• “Directed Event Broadcasting Using Qualified Event Names Example”
on page 3-98 — Shows the behavior of directed event broadcast using a
qualified event name in a transition action

Directed Event Broadcast Using Send Example
This example shows the behavior of directed event broadcast using the
send(event_name,state_name) function in a transition action.

3-96

Directed Event Broadcasting Examples

Initially the Stateflow diagram is asleep. Parallel substates A.A1 and B.B1
are active. By definition, this implies that parallel (AND) superstates A
and B are active. An event occurs and awakens the Stateflow diagram. The
condition [data1==1] is true. The event is processed from the root of the
Stateflow diagram down through the hierarchy of the Stateflow diagram:

1 The Stateflow diagram root checks to see if there is a valid transition as a
result of the event. There is no valid transition.

2 State A checks for any valid transitions as a result of the event. Because
the condition [data1==1] is true, there is a valid transition from state
A.A1 to state A.A2.

3 State A.A1 exit actions (exitA1()) execute and complete.

4 State A.A1 is marked inactive.

5 The transition action send(E_one,B) is executed and completed:

a The broadcast of event E_one awakens state B. (This is a nested event
broadcast.) Because state B is active, the directed broadcast is received
and state B checks to see if there is a valid transition. There is a valid
transition from B.B1 to B.B2.

b State B.B1 exit actions (exitB1()) execute and complete.

c State B.B1 is marked inactive.

d State B.B2 is marked active.

e State B.B2 entry actions (entB2()) execute and complete.

6 State A.A2 is marked active.

7 State A.A2 entry actions (entA2()) execute and complete.

This sequence completes the execution of this Stateflow diagram associated
with an event broadcast and the directed event broadcast to a parallel state of
event E_one.

3-97

3 Stateflow Semantics

Directed Event Broadcasting Using Qualified Event
Names Example
This example shows the behavior of directed event broadcast using a qualified
event name in a transition action.

Initially the Stateflow diagram is asleep. Parallel substates A.A1 and B.B1
are active. By definition, this implies that parallel (AND) superstates A
and B are active. An event occurs and awakens the Stateflow diagram. The
condition [data1==1] is true. The event is processed from the root of the
Stateflow diagram down through the hierarchy of the Stateflow diagram:

1 The Stateflow diagram root checks to see if there is a valid transition as a
result of the event. There is no valid transition.

2 State A checks for any valid transitions as a result of the event. Because
the condition [data1==1] is true, there is a valid transition from state
A.A1 to state A.A2.

3-98

Directed Event Broadcasting Examples

3 State A.A1 exit actions (exitA1()) execute and complete.

4 State A.A1 is marked inactive.

5 The transition action, a qualified event broadcast of event E_one to state B
(represented by the notation B.E_one), is executed and completed:

a The broadcast of event E_one awakens state B. (This is a nested event
broadcast.) Because state B is active, the directed broadcast is received
and state B checks to see if there is a valid transition. There is a valid
transition from B.B1 to B.B2.

b State B.B1 exit actions (exitB1()) execute and complete.

c State B.B1 is marked inactive.

d State B.B2 is marked active.

e State B.B2 entry actions (entB2()) execute and complete.

6 State A.A2 is marked active.

7 State A.A2 entry actions (entA2()) execute and complete.

This sequence completes the execution of this Stateflow diagram associated
with an event broadcast using a qualified event name to a parallel state.

3-99

3 Stateflow Semantics

3-100

4

Creating Stateflow Chart
Diagrams

This chapter takes you through the steps of creating graphical Stateflow
objects in the Stateflow diagram editor. It includes the following sections:

Creating a Stateflow Chart (p. 4-2) Gives a step-by-step procedure for
creating an empty Stateflow chart.

Creating States in Stateflow Charts
(p. 4-5)

Describes how to create and specify
a state in your new chart. Stateflow
diagrams react to events by changing
states, which are modes of a chart.

Creating Transitions in Stateflow
Charts (p. 4-15)

Describes how to create, move,
change, and specify properties for
Stateflow transitions. Charts change
active states using pathways called
transitions.

Creating Flowcharts with
Connective Junctions (p. 4-24)

Describes how to create, move, and
specify properties for Stateflow
junctions. Junctions provide decision
points between alternate transition
paths. History junctions record the
activity of states inside states.

Using the Stateflow Editor (p. 4-27) Describes each part of the Stateflow
diagram editor window that displays
the chart you create. Shows you
how to customize Stateflow Editor
menus.

4 Creating Stateflow Chart Diagrams

Creating a Stateflow Chart
Charts contain a Stateflow diagram that you build with Stateflow objects. You
create charts by adding them to a Simulink system. Create a Stateflow chart
in a Simulink system with the following steps:

1 Enter sfnew or stateflow at the MATLAB command prompt to create a
new empty model with a Stateflow chart.

The stateflow command also displays the Stateflow block library.

You can drag and drop additional charts in your Simulink system from this
library in case you want to create multiple charts in your model. You can
also drag and drop new charts into existing systems from the Stateflow
library in the Simulink Library browser. For information on creating your
own chart libraries, see “Creating Chart Libraries” on page 10-29.

4-2

Creating a Stateflow Chart

2 Open the chart by double-clicking the Chart block.

Stateflow opens the empty chart in a Stateflow editor window.

3 Open the Chart properties dialog box.

See “Setting Properties for Individual Charts” on page 10-6.

4 In the Chart properties dialog box, select a chart type from the drop-down
menu in the State Machine Type field:

Type Description

Classic The default machine type. Provides the full set of Stateflow
semantics (see Chapter 3, “Stateflow Semantics”).

Mealy Machine type in which output is a function of inputs and
state.

Moore Machine type in which output is a function only of state.

Mealy and Moore charts use a subset of Stateflow semantics. For more
information, see Chapter 5, “Building Mealy and Moore Charts in
Stateflow”.

4-3

4 Creating Stateflow Chart Diagrams

5 In the Chart properties dialog box, specify an update method for the chart
in the Update Method field.

This value determines when and how often the chart is called during the
execution of the Simulink model.

6 Use the Stateflow editor to draw a Stateflow chart.

See “Using the Stateflow Editor” on page 4-27 and the remaining sections
in this chapter for more information on how to draw Stateflow diagrams.

7 Interface the chart to other blocks in your Stateflow model, using events
and data.

See Chapter 7, “Defining Events and Data” and Chapter 10, “Defining
Interfaces to Simulink and MATLAB” for more information.

8 Rename and save the model chart by selecting Save Model As from the
Stateflow editor menu or Save As from the Simulink menu.

Note Trying to save a model with more than 25 characters produces an
error. Loading a model with more than 25 characters produces a warning.

4-4

Creating States in Stateflow Charts

Creating States in Stateflow Charts
Stateflow charts react to events by changing states, which are modes of a
chart. The following topics describe how to create and specify a state in a
Stateflow chart:

• “Creating a State” on page 4-5

• “Moving and Resizing States” on page 4-7

• “Creating Substates and Superstates” on page 4-7

• “Grouping States” on page 4-8

• “Specifying Substate Decomposition” on page 4-8

• “Specifying Activation Order for Parallel States” on page 4-9

• “Changing State Properties” on page 4-9

• “Labeling States” on page 4-11

• “Outputting State Activity to Simulink” on page 4-14

Creating a State
You create states by drawing them in the Stateflow diagram editor for a
particular Stateflow chart (block). The following is a depiction of the Stateflow
diagram editor:

4-5

4 Creating Stateflow Chart Diagrams

1 Select the State tool.

2 Move the mouse cursor into the drawing area.

In the drawing area, the mouse cursor becomes state-shaped (rectangular
with oval corners).

3 Click in a particular location to create a state.

The created state appears with a question mark (?) label in its upper
left-hand corner.

4 Click the question mark.

A text cursor appears in place of the question mark.

5 Enter a name for the state and click outside of the state when finished.

4-6

Creating States in Stateflow Charts

The label for a state specifies its required name and optional actions. See
“Labeling States” on page 4-11 for more detail.

To delete a state, click it to select it and choose Cut (Ctrl+X) from the Edit or
any shortcut menu or press the Delete key.

Moving and Resizing States
To move a state, do the following:

1 Click and drag the state.

2 Release it in a new position.

To resize a state, do the following:

1 Place the cursor over a corner of the state.

When the cursor is over a corner, it appears as a double-ended arrow (PC
only; cursor appearance varies with other platforms).

2 Click and drag the state’s corner to resize the state and release the left
mouse button.

Creating Substates and Superstates
A substate is a state that can be active only when another state, called its
parent, is active. States that have substates are known as superstates. To
create a substate, click the State tool and drag a new state into the state you
want to be the superstate. Stateflow creates the substate in the specified
parent state. You can nest states in this way to any depth. To change a
substate’s parentage, drag it from its current parent in the state diagram
and drop it in its new parent.

Note A parent state must be graphically large enough to accommodate all
its substates. You might need to resize a parent state before dragging a new
substate into it. You can bypass the need for a state of large graphical size
by declaring a superstate to be a subchart. See “Using Subcharts to Extend
Charts” on page 6-6 for details.

4-7

4 Creating Stateflow Chart Diagrams

Grouping States
Grouping a state causes Stateflow to treat the state and its contents as a
graphical unit. This simplifies editing a state diagram. For example, moving
a grouped state moves all its substates as well.

To group a state, double-click the state or its border.

Stateflow thickens the grouped state’s border and grays its contents to
indicate that it is grouped.

You can also group a state by right-clicking it and then selecting Make
Contents and then Grouped from the resulting shortcut menu.

You must ungroup a superstate to select objects within the superstate. To
ungroup a state, double-click it or its border or select Ungrouped from the
Make Contents shortcut menu.

Specifying Substate Decomposition
You specify whether a superstate contains parallel (AND) states or exclusive
(OR) states by setting its decomposition. A state whose substates are all
active when it is active is said to have parallel (AND) decomposition. A state
in which only one substate is active when it is active is said to have exclusive
(OR) decomposition. An empty state’s decomposition is exclusive.

To alter a state’s decomposition, select the state, right-click to display the
state’s shortcut menu, and choose either Parallel (AND) or Exclusive (OR)
from the menu.

You can also specify the state decomposition of a chart. In this case, Stateflow
treats the chart’s top-level states as substates of the chart. Stateflow creates
states with exclusive decomposition. To specify a chart’s decomposition,
deselect any selected objects, right-click to display the chart’s shortcut menu,
and choose either Parallel (AND) or Exclusive (OR) from the menu.

The appearance of a superstate’s substates indicates the superstate’s
decomposition. Exclusive substates have solid borders, parallel substates,
dashed borders. A parallel substate also contains a number in its upper right
corner. The number indicates the activation order of the substate relative to
its sibling substates.

4-8

Creating States in Stateflow Charts

Specifying Activation Order for Parallel States
You specify the activation order of parallel states by arranging them from top
to bottom and left to right in the state diagram. Stateflow activates the states
in the order in which you arrange them. In particular, a top-level parallel
state activates before all the states whose top edges reside at a lower level in
the state diagram. A top-level parallel state also activates before any other
state that resides to the right of it at the same vertical level in the diagram.
The same top to bottom, left to right activation order applies to parallel
substates of a state.

Note Stateflow displays the activation order of a parallel state in its upper
right corner.

Changing State Properties
Use the State dialog box to view and change the properties for a state. To
access the State dialog for a particular state, do the following:

1 Right-click the state.

A shortcut pop-up menu appears.

2 Choose Properties from the shortcut menu.

Stateflow displays the State dialog for the state as shown.

4-9

4 Creating Stateflow Chart Diagrams

The State dialog contains the following properties for a state:

Field Description

Name Stateflow diagram name; read-only; click this
hypertext link to bring the state to the foreground.

Debugger
breakpoints

Click the check boxes to set debugging breakpoints
on the execution of state entry, during, or exit
actions during simulation. See Chapter 15,
“Debugging and Testing” for more information.

Test point Select this check box to set the state as a Stateflow
test point that can be monitored with a floating
scope during model simulation. You can also log test
point values into MATLAB workspace objects. See
“Monitoring Stateflow Test Points” on page 15-32 in
the online Stateflow documentation.

Output State
Activity

Select this check box to cause Stateflow to output the
activity status of this state to Simulink via a data
output port on the Chart block containing the state.
See “Outputting State Activity to Simulink” on page
4-14 for more information.

4-10

Creating States in Stateflow Charts

Field Description

Label The label for the state. This includes the name of
the state and its associated actions. See the section
titled “Labeling States” on page 4-11 for detailed
information.

Description Textual description/comment.

Document Link Enter a URL address or a general MATLAB
command. Examples are www.mathworks.com,
mailto:email_address, and edit
/spec/data/speed.txt.

3 After making changes, select one of the following:

• Apply to save the changes and keep the State dialog open.

• Revert to return to the previous settings

• Close to save the changes and close the dialog box

• Help to display the Stateflow documentation in an HTML browser window.

Labeling States
The label for a state specifies its required name for the state and the optional
actions executed when the state is entered, exited, or receives an event while
it is active.

State labels have the following general format.

name/
entry:entry actions
during:during actions
exit:exit actions
bind:data and events
on event_name:on event_name actions

The italicized entries in this format have the following meanings:

4-11

4 Creating Stateflow Chart Diagrams

Keyword Entry Description

NA name A unique reference to the state with optional
slash

entry or en entry actions Actions executed when a particular state is
entered as the result of a transition taken
to that state

during or
du

during actions Actions that are executed when a state
receives an event while it is active with no
valid transition away from the state

exit or ex exit actions Actions executed when a state is exited as
the result of a transition taken away from
the state

bind events or data Binds the specified events or data to this
state. Bound data can only be changed by
this state or its children, but can be read by
other states. Bound events can be broadcast
only by this state or its children.

on event_name

and

on event_name
actions

A specified event

and

Actions executed when a state is active and
the specified event event_name occurs

See “Adding Events” on page 7-4 for
information on defining and using events.

Entering the Name
Initially, a state’s label is empty. Stateflow indicates this by displaying a ? in
the state’s label position (upper left corner). Begin the labeling the state by
entering a name for the state with the following steps:

1 Click the state.

The state turns to its highlight color and a question mark character
appears in the upper left-hand corner of the state.

2 Click the ? to edit the label.

4-12

Creating States in Stateflow Charts

An editing cursor appears. You are now free to type a label.

Enter the state’s name in the first line of the state’s label. Names are
case sensitive. To avoid naming conflicts, do not assign the same name to
sibling states. However, you can assign the same name to states that do
not share the same parent.

If you are finished labeling the state, click outside of the state. Otherwise,
continue entering actions. To reedit the label, simply click the label text
near the character position you want to edit.

Entering Actions
After entering the name of the state in the state’s label, you can enter actions
for any of the following action types:

• Entry Actions — begin on a new line with the keyword entry or en,
followed by a colon, followed by one or more action statements on one or
more lines. To separate multiple actions on the same line, us a comma
or a semicolon.

You can begin entry actions on the same line as the state’s name. In this
case, begin the entry action with a forward slash (/) instead of the entry
keyword.

• Exit Actions — begin on a new line with the keyword exit or ex, followed
by a colon, followed by one or more action statements on one or more lines.
To separate multiple actions on the same line, us a comma or a semicolon.

• During Actions — begin on a new line with the keyword entry or en,
followed by a colon, followed by one or more action statements on one or
more lines. To separate multiple actions on the same line, us a comma
or a semicolon.

• Bind Actions — begin on a new line with the keyword bind followed by
a colon, followed by one or more data or events on one or more lines. To
separate multiple actions on the same line, us a comma or a semicolon.

• On <event_name> Actions — begin with the keyword on, followed by a
space and the name of an event, followed by a colon, followed by one or
more action statements on one or more lines, for example

on ev1: exit();

4-13

4 Creating Stateflow Chart Diagrams

To separate multiple actions on the same line, use a comma or a semicolon.
If you want different events to trigger different actions, enter multiple
on event_name blocks in the state’s label, each specifying the action for a
particular event or set of events, for example:

on ev1: action1(); on ev2: action2();

Note The execution of the actions you enter for a state is dependent only on
their action type, and not on the order in which you enter them in the label.

You can also edit the state’s label through the properties dialog for the state.
See “Changing State Properties” on page 4-9.

Outputting State Activity to Simulink
Stateflow allows a chart to output the activity of its states to Simulink via a
data port on the state’s Chart block. To enable output of a particular state’s
activity, first name the state (see “Entering the Name” on page 4-12), if
unnamed, then select the Output State Activity check box on the state’s
property dialog (see “Changing State Properties” on page 4-9). Stateflow
creates a data output port on the Chart block containing the state. The port
has the same name as the state. Stateflow also adds a corresponding data
object of type State to the Stateflow data dictionary. During simulation of
a model, the port outputs 1 at each time step in which the state is active;
0, otherwise. Attaching a scope to the port allows you to monitor a state’s
activity visually during the simulation. See “Sharing Input and Output Data
with Simulink” on page 7-46 for more information.

Note If a chart has multiple states with the same name, only one of those
states can output activity data. If you check the Output State Activity
property for more than one state with the same name, Stateflow outputs
data only from the first state whose Output State Activity property you
specified.

4-14

Creating Transitions in Stateflow Charts

Creating Transitions in Stateflow Charts
Charts change active states using pathways called transitions. The following
topics describe how to create, move, change, and specify properties for
Stateflow transitions:

• “Creating a Transition” on page 4-15

• “Creating Straight Transitions” on page 4-16

• “Labeling Transitions” on page 4-17

• “Moving Transitions” on page 4-18

• “Changing Transition Arrowhead Size” on page 4-20

• “Creating Self-Loop Transitions” on page 4-20

• “Creating Default Transitions” on page 4-21

• “Changing Transition Properties” on page 4-22

Creating a Transition
Use the following procedure for creating transitions between states and
junctions:

1 Place the cursor on or close to the border of a source state or junction.

The cursor changes to crosshairs.

2 Click and drag a transition to a destination state or junction.

3 Release on the border of the destination state or junction.

Notice that the source of the transition sticks to the initial source point
for the transition.

4-15

4 Creating Stateflow Chart Diagrams

Attached transitions obey the following rules:

• Transitions do not attach to the corners of states. Corners are used
exclusively for resizing.

• Transitions exit a source and enter a destination at angles perpendicular to
the source or destination surface.

• Newly created transitions have smart behavior. See “Setting Smart
Behavior in Transitions” on page 6-19.

To delete a transition, select it and choose Ctrl+X or Cut from the Edit
menu, or press the Delete key.

See the following sections for help with creating self-loop and default
transitions:

• “Creating Self-Loop Transitions” on page 4-20

• “Creating Default Transitions” on page 4-21

Creating Straight Transitions
While creating a transition, notice that the source of the transition sticks to
the initial source point. This often results in a curved transition. To create
a perfectly straight transition, while clicking and dragging from one state
to another, do one of the following:

• Press the S key (works on all platforms).

• Right-click the mouse (works on most platforms).

Either of these actions straightens the transition perpendicular to the
transition’s source state or junction surface, if possible, and allows the
transition source point to slide to maintain straightness. For states, if the
cursor is out of range of perpendicularity with the source state, the transition
is unaffected.

4-16

Creating Transitions in Stateflow Charts

Labeling Transitions
Transition labels contain Stateflow action language that accompanies the
execution of a transition. Creating and editing transition labels is described
in the following topics:

• “Editing Transition Labels” on page 4-17

• “Transition Label Format” on page 4-17

For more information on transition concepts, see “Transition Label Notation”
on page 2-15.

For more information on transition label contents, see Chapter 8, “Using
Actions in Stateflow”.

Editing Transition Labels
Label unlabeled transitions as follows:

1 Select (left-click) the transition.

The transition turns to its highlight color and a question mark (?) appears
on the transition. The ? character is the default empty label for transitions.

2 Left-click the ? to edit the label.

An editing cursor appears. You are now free to type a label.

To apply and exit the edit, deselect the object. To reedit the label, simply
left-click the label text near the character position you want to edit.

Transition Label Format
Transition labels have the following general format:

event [condition]{condition_action}/transition_action

Specify, as appropriate, relevant names for event, condition,
condition_action, and transition_action.

4-17

4 Creating Stateflow Chart Diagrams

Label Field Description

event Event that causes the transition to be evaluated.

condition Defines what, if anything, has to be true for the
condition action and transition to take place.

condition_action If the condition is true, the action specified executes
and completes.

transition_action This action executes after the source state for the
transition is exited but before the destination state
is entered.

Transitions do not have to have labels. You can specify some, all, or none of
the parts of the label. Valid transition labels are defined by the following:

• Can have any alphanumeric and special character combination, with the
exception of embedded spaces

• Cannot begin with a numeric character

• Can have any length

• Can have carriage returns in most cases

• Must have an ellipsis (...) to continue on the next line

Moving Transitions
You can move transition lines with a combination of several individual
movements. These movements are described in the following topics:

• “Bowing the Transition Line” on page 4-19

• “Moving Transition Attach Points” on page 4-19

• “Moving Transition Labels” on page 4-19

In addition, transitions move along with the movements of states and
junctions. See “Setting Smart Behavior in Transitions” on page 6-19 for a
description of smart and nonsmart transition behavior.

4-18

Creating Transitions in Stateflow Charts

Bowing the Transition Line
You can move or "bow" transition lines with the following procedure:

1 Place the cursor on the transition at any point along the transition except
the arrow or attach points.

2 Click and drag the mouse to move the transition point to another location.

Only the transition line moves. The arrow and attachment points do not
move.

3 Release the mouse button to specify the transition point location.

The result is a bowed transition line. Repeat the preceding steps to move the
transition back into its original shape or into another shape.

Moving Transition Attach Points
You can move the source or end points of a transition to place them in exact
locations as follows:

1 Place the cursor over an attach point until it changes to a small circle.

2 Click and drag the mouse to move the attach point to another location.

3 Release the mouse button to specify the new attach point.

The appearance of the transition changes from a solid to a dashed line when
you detach and release a destination attach point. Once you attach the
transition to a destination, the dashed line changes to a solid line.

The appearance of the transition changes to a default transition when you
detach and release a source attach point. Once you attach the transition to a
source, the appearance returns to normal.

Moving Transition Labels
You can move transition labels to make the Stateflow diagram more readable.
To move a transition label, do the following:

1 Click and drag the label to a new location.

4-19

4 Creating Stateflow Chart Diagrams

2 Release the left mouse button.

If you mistakenly click and then immediately release the left mouse button on
the label, you will be in edit mode for the label. Press the Esc key to deselect
the label and try again. You can also click the mouse on an empty location in
the diagram editor to deselect the label.

Changing Transition Arrowhead Size
The arrowhead size is a property of the destination object. Changing one of
the incoming arrowheads of an object causes all incoming arrowheads to that
object to be adjusted to the same size. The arrowhead size of any selected
transitions, and any other transitions ending at the same object, is adjusted.

To adjust arrowhead size from the Transition shortcut menu:

1 Select the transitions whose arrowhead size you want to change.

2 Place the cursor over a selected transition and right-click to display the
shortcut menu.

A menu of arrowhead sizes appears.

3 Select an arrowhead size from the menu.

To adjust arrowhead size from the Junction shortcut menu:

1 Select the junctions whose incoming arrowhead size you want to change.

2 Place the cursor over a selected junction and right-click.

3 In the resulting submenu, place the cursor over Arrowhead Size.

A menu of arrowhead sizes appears.

4 Select a size from the menu.

Creating Self-Loop Transitions
A self-loop transition is a transition whose source and destination are the
same state or junction.

4-20

Creating Transitions in Stateflow Charts

The following is an example of a self-loop transition:

To create a self-loop transition, do the following:

1 Create the transition as usual by clicking and dragging it out from the
source state or junction.

2 Continue dragging the transition tip back to a location on the source state
or junction.

For the semantics of self-loops, see “Self-Loop Transitions” on page 2-21.

Creating Default Transitions
A default transition is a transition with a destination (a state or a junction),
but no apparent source object. See “Default Transitions” on page 1-14 for an
explanation of default transitions.

Click the Default Transition button in the toolbar and click a location in
the drawing area close to the state or junction you want to be the destination
for the default transition. Drag the mouse to the destination object to attach
the default transition.

The size of the endpoint of the default transition is proportional to the
arrowhead size. See “Changing Transition Arrowhead Size” on page 4-20.

Default transitions can be labeled just like other transitions. See “Labeling
Default Transitions” on page 2-27 for an example.

4-21

4 Creating Stateflow Chart Diagrams

Changing Transition Properties
Use the Transition dialog box to view and change the properties for a
transition. To access the Transitions dialog for a particular transition, do
the following:

1 Right-click on the transition.

A shortcut pop-up menu appears.

2 Choose Properties from the shortcut menu.

Stateflow displays the Transition dialog for the transitions as shown.

The following table lists and describes the properties displayed for a
transition in its Transition dialog:

4-22

Creating Transitions in Stateflow Charts

Field Description

Source Source of the transition; read-only; click the
hypertext link to bring the transition source
to the foreground.

Destination Destination of the transition; read-only; click
the hypertext link to bring the transition
destination to the foreground.

Parent Parent of this state; read-only; click the
hypertext link to bring the parent to the
foreground.

Debugger
breakpoints

Select the check boxes to set debugging
breakpoints either when the transition is
tested for validity or when it is valid.

Label The transition’s label. See “Transition Label
Notation” on page 2-15 for more information
on valid label formats.

Description Textual description/comment.

Document Link Enter a Web URL address or a general
MATLAB command. Examples are
www.mathworks.com, mailto:email_address,
and edit/spec/data/speed.txt.

3 After making changes, select one of the following:

• Apply to save the changes and keep the Transition dialog open.

• Revert to return to the previous settings for the dialog

• Close to save the changes and close the dialog box

• Help to display Stateflow online help in an HTML browser window.

4-23

4 Creating Stateflow Chart Diagrams

Creating Flowcharts with Connective Junctions
Connective junctions provide decision points between alternate transition
paths. The following topics describe how to create, move, and specify
properties for connective junctions:

• “Creating a Connective Junction” on page 4-24

• “Changing Connective Junction Size” on page 4-25

• “Changing Junction Properties” on page 4-25

Creating a Connective Junction
To create a junction, do the following:

1 In the diagram toolbar, click the Connective Junction tool .

2 Move the cursor into the diagram editor.

The cursor takes on the shape of a connective junction.

3 Click to place a connective junction in the desired location in the drawing
area.

To create multiple connective junctions, do the following:

1 In the diagram toolbar, double-click the Connective Junction tool.

2 The button is now in multiple object mode.

3 Click anywhere in the drawing area to place a connective junction in the
drawing area.

4 Move to and click another location to create an additional connective
junction.

5 Click the Connective Junction tool or press the Esc key to cancel the
operation.

To move a connective junction to a new location, click and drag it to the new
position.

4-24

Creating Flowcharts with Connective Junctions

Changing Connective Junction Size
To change the size of connective junctions, do the following:

1 Select the connective junctions whose size you want to change.

2 Place the cursor over one of the connective junctions and right-click.

3 In the resulting submenu, place the cursor over Junction Size.

A menu of junction sizes appears.

4 Select a size from the menu of junction sizes.

Changing Junction Properties
To edit the properties for a connective junction, do the following:

1 Right-click a connective junction.

2 In the resulting submenu select Properties.

The Connective Junction dialog box appears as shown.

3 Edit the fields in the properties dialog, which are described in the following
table:

4-25

4 Creating Stateflow Chart Diagrams

Field Description

Parent Parent of this state; read-only; click the
hypertext link to bring the parent to the
foreground.

Description Textual description/comment.

Document Link Enter a URL address or a general
MATLAB command. Examples are
www.mathworks.com, mailto:email_address,
and edit/spec/data/speed.txt.

4 When finished editing, select one of the following:

• Select the Apply button to save the changes.

• Select the Cancel button to cancel any changes you’ve made.

• Select OK to save the changes and close the dialog box.

• Select the Help button to display the Stateflow online help in an HTML
browser window.

4-26

Using the Stateflow Editor

Using the Stateflow Editor
You edit your Stateflow chart diagrams in the Stateflow Editor. This section
describes each part of the Stateflow diagram editor window displaying the
chart you created. It contains the following topics:

• “Stateflow Diagram Editor Window” on page 4-27

• “Displaying the Context Menu for Objects” on page 4-29

• “Specifying Colors and Fonts” on page 4-30

• “Differentiating Syntax Elements in the Stateflow Action Language” on
page 4-33

• “Selecting and Deselecting Objects” on page 4-36

• “Cutting and Pasting Objects” on page 4-37

• “Copying Objects” on page 4-37

• “Editing Object Labels” on page 4-38

• “Viewing Stateflow Objects in the Model Explorer” on page 4-38

• “Zooming a Diagram” on page 4-39

• “Undoing and Redoing Editor Operations” on page 4-41

• “Stateflow Chart Notes Dialog Box” on page 4-42

• “Keyboard Shortcuts for Stateflow Diagrams” on page 4-44

• “Customizing the Stateflow Editor” on page 4-47

Stateflow Diagram Editor Window
You use the Stateflow diagram editor to draw, zoom, modify, print, and save a
state diagram displayed in the window. It has the following appearance:

4-27

4 Creating Stateflow Chart Diagrams

The Stateflow diagram editor window includes the following elements:

• Title bar

The full chart name appears here in model name/chart name* format. The
* character appears on the end of the chart name for a newly created chart
or for an existing chart that has been edited but not saved yet.

• Menu bar

Most editor commands are available from the menu bar.

• Toolbar

Contains buttons for cut, copy, paste, and other commonly used editor
commands. You can identify each tool of the toolbar by placing the mouse
cursor over it until an identifying tool tip appears.

The toolbar also contains buttons for navigating a chart’s subchart
hierarchy (see “Navigating Subcharts” on page 6-10).

• Object palette

4-28

Using the Stateflow Editor

Displays a set of tools for drawing states, transitions, and other state chart
objects.

• Drawing area

Displays an editable copy of a state diagram.

• Zoom control

See “Viewing Stateflow Objects in the Model Explorer” on page 4-38 for
information on using the zoom control.

• Shortcut menus

These menus pop up from the drawing area when you right-click an object.
They display commands that apply only to that object. If you right-click
an empty area of the diagram editor, the shortcut menu applies to the
chart object. See “Displaying the Context Menu for Objects” on page 4-29
for more information.

• Status bar

Displays tool tips and status information.

Displaying the Context Menu for Objects
Every object that you create in a state diagram has a shortcut menu
associated with it. To display the shortcut (context) menu, do the following:

1 Move the cursor over the object.

2 Right-click the object.

Stateflow pops up a menu of operations that apply to the object.

To display the context menu for the chart object, do the following:

1 Move the cursor to an unoccupied location in the diagram.

4-29

4 Creating Stateflow Chart Diagrams

2 Right-click the location.

Stateflow pops up a menu of operations that apply to the chart.

Specifying Colors and Fonts
You can specify the color and font for items in the diagram editor, as described
in the following topics:

• “Changing Fonts for an Individual Text Item” on page 4-30 — Tells you how
to set color and font for an individual item in the Stateflow diagram editor.

• “Using the Colors & Fonts Dialog” on page 4-30 — Shows you how to set
default colors and fonts for all Stateflow diagram editor items in the Colors
and Fonts dialog

Changing Fonts for an Individual Text Item
You can change the font for an individual text item as follows:

1 Right-click the individual item.

2 From the resulting submenu, select Font Size -> size of font.

You can also specify the label font size of a particular object:

1 Left-click an individual text item in the editor.

2 From the editor’s Edit menu, select Set Font Size.

3 From the resulting submenu, select the font size.

Using the Colors & Fonts Dialog
The Stateflow Colors & Fonts dialog allows you to specify a color scheme for
a chart as a whole, or colors and label fonts for different types of objects in
a chart.

To display the Colors & Fonts dialog, select Style from the Stateflow editor’s
Edit menu.

4-30

Using the Stateflow Editor

The drawing area of the dialog displays examples of the types of objects whose
colors and font labels you can specify. The examples use the colors and label
fonts specified by the current color scheme for the chart. To choose another
color scheme, select the scheme from the dialog’s Schemes menu. The dialog
displays the selected color scheme. Click Apply to apply the selected scheme
to the chart or OK to apply the scheme and dismiss the dialog.

To make the selected scheme the default scheme for all Stateflow charts,
select Make this the "Default" scheme from the dialog’s Options menu.

To modify the current scheme, position the cursor over the example of the
type of object whose color or label font you want to change. Then left-click
to change the object’s color or right-click to change the object’s font. If you
left-click, Stateflow displays a color chooser dialog.

4-31

4 Creating Stateflow Chart Diagrams

Use the dialog to select a new color for the selected object type.

If the selected object is a label and you right-click, Stateflow displays a font
selection dialog.

Use the font selector to choose a new font for the selected label.

To save changes to the default color scheme, select Save defaults to disk
from the Colors & Fonts dialog’s Options menu.

4-32

Using the Stateflow Editor

Note Choosing Save defaults to disk has no effect if the modified scheme is
not the default scheme.

Differentiating Syntax Elements in the Stateflow
Action Language
This release gives you the option of using color highlighting to differentiate
the following syntax elements in the Stateflow action language:

• Keyword

• Comment

• Event

• Graphical function

• String

• Number

Note Syntax highlighting is a user preference, not a model preference.

Default Syntax Highlighting
Syntax highlighting is enabled by default, assigning the following colors to
syntax elements:

4-33

4 Creating Stateflow Chart Diagrams

����

�	�������
�	�������
�	�������

� � � � �

� 	 � � � � � � �
� 	 � � � � � � �
� 	 � � � � � � �

��� �

�	����!��
�	���"���
�	�������

#$%�

� 	 �� �����
� 	 �� �&'��
� 	 �� �&'��

(%�)�

�	���&*!�
�	����*&�
�	���+'��

(%� �� ,%

� 	 � � � + � � �
� 	 � � � � � � �
� 	 � � � + � � �

Here is a Stateflow chart that illustrates the default highlighting for each
language element:

4-34

Using the Stateflow Editor

If the parser cannot resolve a syntax element, Stateflow displays the element
in the default text color.

To modify color assignments, see “Editing Syntax Highlighting” on page
4-35. To disable syntax highlighting, see “Enabling and Disabling Syntax
Highlighting” on page 4-36.

Editing Syntax Highlighting
To edit syntax highlighting, follow these steps:

1 In the Stateflow Editor, select Highlight Preferences from the Edit
menu.

The Syntax Highlight Preferences dialog appears.

2 Click the color you want to change, choose an alternative from the color
palette, and click OK.

3 Click OK to close the Syntax Highlight Preferences dialog.

4-35

4 Creating Stateflow Chart Diagrams

Enabling and Disabling Syntax Highlighting
You can toggle syntax highlighting from the Tools and Edit menus in the
Stateflow Editor. From the Tools menu, select Syntax Highlighting. From
the Edit menu, follow these steps:

1 Select Highlighting Preferences to open the Syntax Highlight
Preferences dialog.

2 Check or uncheck Enable Syntax Highlighting and click OK.

Selecting and Deselecting Objects
Once an object is in the drawing area, you need to select it to make any
changes or additions to that object.

Select objects in the Stateflow diagram editor as follows:

• To select an object, click anywhere inside of the object.

• To select multiple adjacent objects, click and drag a selection rubberband so
that the rubberband box encompasses or touches the objects you want to
select, and then release the mouse button.

All objects or portions of objects within the rubberband are selected.

• To select multiple separate objects, simultaneously press the Shift key and
click an object or rubberband a group of objects.

This adds objects to the list of already selected objects unless an object
was already selected, in which case, the object is deselected. This type
of multiple object selection is useful for selecting objects within a state
without selecting the state itself when you rubberband select a state and all
of its objects and then Shift-click inside the containing state to deselect it.

• To select all objects in the Stateflow diagram, from the Edit menu select
Select All.

You can also select all objects by selecting Select All from the right-click
shortcut menu.

• To deselect all selected objects, press the Esc key.

Pressing the Esc key again displays the parent of the current chart.

4-36

Using the Stateflow Editor

When an object is selected, it is highlighted in the color set as the selection
color (blue by default; see “Specifying Colors and Fonts” on page 4-30 for
more information).

Cutting and Pasting Objects
You can cut objects from the drawing area or cut and then paste them as
many times as you like. You can cut and paste objects from one Stateflow
diagram to another. Stateflow retains a selection list of the most recently
cut objects. The objects are pasted in the drawing area location closest to
the current mouse location.

To cut an object, select the object and choose Cut from one of the following:

• The Edit menu on the main window

• The right-click shortcut menu

Pressing the Ctrl and X keys simultaneously is the keyboard equivalent to
the Cut menu item.

To paste the most recently cut selection of objects, choose Paste from either
of the following:

• The Edit menu on the main window

• The right-click shortcut menu

Pressing the Ctrl and V keys simultaneously is the keyboard equivalent to
the Paste menu item.

Copying Objects
To copy and paste an object in the drawing area, select the objects and
right-click and drag them to the desired location in the drawing area. This
operation also updates the Stateflow clipboard.

Alternatively, to copy from one Stateflow diagram to another, choose the Copy
and then Paste menu items from either of the following:

• The Edit menu on the Stateflow graphics editor window

4-37

4 Creating Stateflow Chart Diagrams

• The right-click shortcut menu

Pressing the Ctrl and C keys simultaneously is the keyboard equivalent
to the Copy menu item. States that contain other states (superstates) can
be grouped together.

Editing Object Labels
Some Stateflow objects (for example, states and transitions) have labels. To
change these labels, place the cursor anywhere in the label and click. The
cursor changes to an I-beam. You can then edit the text.

The shortcut (context) menus allows you to change a label’s font size:

1 Select the states whose label font size you want to change.

2 Right-click to display the shortcut menu.

3 Place the cursor over the Font Size menu item.

A menu of font sizes appears.

4 Select the desired font size from the menu.

Stateflow changes the font size of all labels on all selected states to the
selected size.

Viewing Stateflow Objects in the Model Explorer
To view or modify Stateflow diagram editor objects in the Model Explorer,
do the following:

1 Position the mouse cursor over the state.

2 Right-click to display the state’s context menu.

3 Select Explore from the context menu.

The Model Explorer opens (if not already open) and highlights the state
in the left hierarchy pane to show any events or data defined by the state.

4-38

Using the Stateflow Editor

To view events and data defined by the parent state of a transition or junction,
select Explore from the transition or junction’s context menu.

The Model Explorer is the only place where you can view and modify events
and data. See Chapter 7, “Defining Events and Data” for more details on
using the Model Explorer to view, add, delete, and modify data and events
for Stateflow objects. See also “Using the Model Explorer with Stateflow
Objects” on page 16-2 for more details on using the Model Explorer to view
Stateflow objects.

Zooming a Diagram
You can magnify or shrink a diagram, using the following zoom controls:

• Zoom Factor Selector. Selects a zoom factor (see “Using the Zoom Factor
Selector” on page 4-39).

• Zoom In button. Zooms in by the current zoom factor.

You can also press the R key to increase the zoom factor.

• Zoom Out button. Zooms out by the current zoom factor.

You can also press the V key to decrease the zoom factor.

Using the Zoom Factor Selector
The Zoom Factor Selector allows you to specify the zoom factor by

• Choosing a value from a menu.

Click the selector to display the menu.

• Double-clicking the Zoom Factor Selector selects the zoom factor that
will fit the view to all selected objects or all objects if none are selected.

You can achieve the same effect by choosing Fit to View from the right-click
context menu or by pressing the F key to apply the maximum zoom that
includes all selected objects. Press the space bar to fit all objects to the view.

• Clicking the Zoom Factor Selector and dragging up or down.

Dragging the mouse upward increases the zoom factor. Dragging the mouse
downward decreases the zoom factor. Alternatively, right-clicking and
dragging on the percentage value resizes while you are dragging.

4-39

4 Creating Stateflow Chart Diagrams

Zooming with Shortcut Keys
The following is a summary of the shortcut keys you can use to perform some
of the zooming operations described above:

Key Zoom Operation

F Highlight (select) an object and press the F key to
fit it to view.

space bar Set to full view of diagram.

R or + Increase zoom factor.

V or - Decrease zoom factor.

Moving in Zoomed Diagrams with Shortcut Keys
You can also use number keys to move in zoomed diagrams according to their
layout in the number keypad:

You can enter numbers for moving from the number keys above the alphabetic
keys at any time or from the number keypad if NumLock is engaged for the
keyboard. The 5 key fits the currently selected object to full view. If no object
is selected, the entire diagram is fit to view.

4-40

Using the Stateflow Editor

Undoing and Redoing Editor Operations
You can undo and redo operations you perform in the Stateflow diagram
editor. When you undo an operation in the Stateflow diagram editor, you
reverse the last edit operation you performed. After you undo operations in
the diagram editor, you can also redo them one at a time.

To undo an operation in the Stateflow diagram editor, do one of the following:

• Select the Undo icon in the toolbar of the Stateflow diagram editor .

When you place your mouse cursor over the Undo button, the tool tip that
appears indicates the nature of the operation to undo.

• From the Edit menu, select Undo.

To redo an operation in the Stateflow diagram editor, do one of the following:

• Select the Redo icon in the toolbar of the Stateflow diagram editor .

When you place your mouse cursor over the Redo button, the tool tip that
appears indicates the nature of the operation to redo.

• From the Edit menu, select Redo.

Exceptions for Undo
You can undo or redo all diagram editor operations, with the following
exceptions:

• You cannot undo the operation of turning subcharting off for a state
previously subcharted.

To understand subcharting, see “Using Subcharts to Extend Charts” on
page 6-6.

• You cannot undo the drawing of a supertransition or the splitting of an
existing transition.

Splitting of an existing transition refers to the redirection of the source or
destination of a transition segment that is part of a supertransition. For
a description of supertransitions, see “Drawing a Supertransition Into a

4-41

4 Creating Stateflow Chart Diagrams

Subchart” on page 6-13 and “Drawing a Supertransition Out of a Subchart”
on page 6-16.

• You cannot undo any changes made to the diagram editor through the
Stateflow API.

For a description of the Stateflow API (Application Programming Interface),
see “Using the API” in the Stateflow API Guide.

Caution When you perform one of the preceding operations, the undo and
redo buttons are disabled from undoing and redoing any prior operations.

Stateflow Chart Notes Dialog Box
You can use the chart notes dialog box to edit note properties.

4-42

Using the Stateflow Editor

The Note dialog contains the following properties for a chart note:

Field Description

Label The label for the note. This includes the name of the
note and its associated actions.

Description Textual description/comment.

Use display text as
click callback

Checking this option causes Simulink to treat the
text in the Text field as the note’s click function.
The specified text must be a valid MATLAB
expression comprising symbols that are defined in
the MATLAB workspace when the user clicks this
annotation. Note that selecting this option disables
the ClickFcn edit field.

4-43

4 Creating Stateflow Chart Diagrams

Field Description

ClickFcn Specifies MATLAB code to be executed when a user
single-clicks this annotation. Simulink stores the
code entered in this field with the model.

Document Link Enter a URL address or a general MATLAB
command. Examples are www.mathworks.com,
mailto:email_address, and edit
/spec/data/speed.txt.

See “Annotation Callback Functions” in the Simulink User’s Guide
documentation for a description of the ClickFcn edit field.

Keyboard Shortcuts for Stateflow Diagrams
The following table is a comprehensive list of keyboard shortcuts for the
Stateflow diagram editor.

Task
Microsoft
Windows UNIX

Display the parent of the currently
displayed chart or subchart. There is no
limit on the time between the entry of each
period.

.. (two
periods)

.. (two
periods)

Zoom in by an incremental amount. + or r + or r

Zoom out by an incremental amount. - or v - or v

Fit chart to screen. 0 or Space
Bar

0 or Space
Bar

Zoom to normal view. 1 1

Move the current diagram editor view down
within the full diagram.

2 2

Move the current diagram editor view down
and right within the full diagram.

3 3

Move the current diagram editor view left
within the full diagram.

4 4

4-44

Using the Stateflow Editor

Task
Microsoft
Windows UNIX

Fit the currently selected object to full view.
If no object is selected, the chart is fit to full
view.

5 5

Move the current diagram editor view right
within the full diagram.

6 6

Move the current diagram editor view up
and left within the full diagram.

7 7

Move the current diagram editor view up
within the full diagram.

8 8

Move the current diagram editor view right
within the full diagram.

9 9

Delete the selected objects. Delete Delete

Access the contents of the currently
highlighted subchart or truth table.

Enter Enter

Perform any of the following actions:

• If you are editing the label of an object,
the Esc key disables label editing but
leaves the object selected.

• If objects are selected, the Esc key
deselects all objects in the current view.

• If the current diagram view is the
contents of a subchart and no object is
selected, the Esc key changes the view to
the parent of the subchart.

• If the current diagram view is at the
chart level and no object is selected, the
Esc key displays the Simulink window
for that chart’s block.

Esc Esc

Fit the currently selected object to screen.
If no object is selected, the chart is fit to
screen.

f f

4-45

4 Creating Stateflow Chart Diagrams

Task
Microsoft
Windows UNIX

Pan left d or
Ctrl+Left
Arrow

d or
Ctrl+Left
Arrow

Pan right g or
Ctrl+Right
Arrow

g or
Ctrl+Right
Arrow

Pan up e or Ctrl+Up
Arrow

e or Ctrl+Up
Arrow

Pan down c or
Ctrl+Down
Arrow

c or
Ctrl+Down
Arrow

Go back in pan/zoom history b b

Go forward in pan/zoom history t t

Select the first state, function, truth table,
or box parented (contained) by the currently
selected object in the same diagram.
Selection order of contained objects is
top-down, left-right. See also u key.

j (jump) j (jump)

Select the next state, function, truth table,
or box at the same containment level.
Selection order of objects is top-down,
left-right.

n (next) n (next)

Select the previous state, function, truth
table, or box at the same containment
level. Selection order of objects is top-down,
left-right.

p (previous) p (previous)

Select the parent object of the currently
highlighted object in the same diagram. See
also J key.

u (up) u (up)

4-46

Using the Stateflow Editor

Customizing the Stateflow Editor

You can write M-code to customize the Stateflow Editor by

• Adding items and submenus to the end of Stateflow Editor menus (see
“Adding Items to Stateflow Editor Menus” on page 4-47)

• Disabling and hiding items on menus in the Stateflow Editor (see
“Disabling and Hiding Stateflow Editor Menu Items” on page 4-50)

Adding Items to Stateflow Editor Menus
You use the Simulink customization manager to add items, including
submenus, to the end of menus in the Stateflow Editor. For example, you can
add menu items that invoke your own M-code functions.

To add an item to the end of a Stateflow Editor menu, you must create the
following functions in an sl_customization.m file on the MATLAB path:

• For each item, create a schema function, which defines a custom item on a
menu owned by the Stateflow Editor.

• Create a custom menu function, which registers schema functions that
define custom items that you want to add to a menu.

• Define the sl_customization function to register the custom menu
function with the Simulink customization manager.

• Create callback functions for the items that you add to the Stateflow Editor
menus.

For detailed descriptions of these procedures, see “Adding Items to Model
Editor Menus” in the online Simulink documentation.

Code Example: Adding a Custom Submenu to the Stateflow Editor.
The following sl_customization.m file adds a submenu called Set Font
Style to the Stateflow Editor’s Edit menu. The submenu contains three menu
options for font style: Arial, Courier New, and Times New Roman. Your
sl_customization function should accept one argument, a handle to an
object called the Simulink.CustomizationManager. For example, you can set
cm = sl_customization_manager at the MATLAB command line.

4-47

4 Creating Stateflow Chart Diagrams

function sl_customization(cm)

%% Register custom menu function.
cm.addCustomMenuFcn('Stateflow:EditMenu', @getMyMenuItems);

end

%% Define the custom submenu function.

function schemaFcns = getMyMenuItems(callbackInfo)
schemaFcns = {@getItem4};

end

%% Define the schema function for first submenu item
function schema = getItem1(callbackInfo)

schema = sl_action_schema;
schema.label = 'Arial';
schema.userdata = 'font style Arial';
schema.callback = @myCallback1;

end

%% Define the schema function for second submenu item.
function schema = getItem2(callbackInfo)

schema = sl_action_schema;
schema.label = 'Courier New';
schema.userdata = 'font style Courier New';
schema.callback = @myCallback1;

%% Define the schema function for third submenu item.
function schema = getItem3(callbackInfo)

schema = sl_action_schema;
schema.label = "Times New Roman';
schema.userdata = 'font style Times New Roman';
schema.callback = @myCallback1;

end

function myCallback1(callbackInfo)
disp(['Callback for 'callbackInfo.userdata' was called']);

end

function schema = getItem4(callbackInfo)

4-48

Using the Stateflow Editor

% Make a submenu label 'Set Font Style'
% with the font styles defined in menu items above.
schema = sl_container_schema;
schema.label = 'Set Font Style';
schema.childrenFcns = {@getItem1, @getItem2, @getItem3};

end

Note The addCustomMenuFcn function requires that you pass a string
argument that identifies the menu or menu item you wish to customize. To
determine the appropriate tag, see “Displaying Menu Tags” on page 4-51.

Custom Menu Example: Set Font Style. When you run
sl_customization(cm) described in Code Example: Adding a Custom
Submenu to the Stateflow Editor, the following new submenu appears in
the Stateflow Editor:

4-49

4 Creating Stateflow Chart Diagrams

Disabling and Hiding Stateflow Editor Menu Items
You can disable or hide items that appear on Stateflow Editor menus by

• Creating a filter function that disables or hides the menu item (see
“Creating a Filter Function” in the Simulink User’s Guide)

• Registering the filter function with the Simulink customization manager
(see “Registering a Filter Function” in the Simulink User’s Guide)

For detailed descriptions of these procedures, see “Disabling and Hiding
Model Editor Menu Items” in the online Simulink documentation.

Code Example: Disabling the Print Command in the Stateflow Editor.
The following sl_customization.m file disables the Print command in
the File menu of the Stateflow Editor. The example assumes you set cm =
sl_customization_manager.

function sl_customization(cm)

%%Register custom filter function.
cm.addCustomFilterFcn('Stateflow:PrintMenuItem', @myFilter);

end

function state = myFilter(callbackInfo)
state = 'Disabled';

end

Note The addCustomFilterFcn function requires that you pass a string
argument that identifies the menu or menu item you wish to disable or hide.
To determine the appropriate tag, see “Displaying Menu Tags” on page 4-51.

The myFilter function sets the state of the menu item. Valid states are:

• ’Hidden’

• ’Disabled’

• ’Enabled’

4-50

Using the Stateflow Editor

Custom Menu Example: Disable Print Menu Item. After you run
sl_customization(cm) described in Code Example: Disabling the Print
Command in the Stateflow Editor, the Stateflow Editor’s File menu looks
like this:

Displaying Menu Tags
To determine the tags that identify the menus or menu items you wish to
customize on the Stateflow Editor, set the Simulink customization manager’s
showWidgetIdAsToolTip property to true by entering the following commands
at the MATLAB command line:

cm = sl_customization_manager;
cm.showWidgetIdAsToolTip = true;

4-51

4 Creating Stateflow Chart Diagrams

After enabling this property, Stateflow displays the tag of each menu or menu
item next to its label in the Stateflow Editor:

To turn off tag display, enter the following command at the MATLAB
command line:

cm.showWidgetIdAsToolTip = false;

Note Some Stateflow Editor menu items may not work while menu tags are
displayed. Thus, you should turn off menu tag display before attempting
to use the menus.

4-52

5

Building Mealy and Moore
Charts in Stateflow

Stateflow allows you to build charts that model the Mealy and Moore
paradigms for finite state machines. This chapter presents an overview of
these paradigms and describes how to implement Mealy and Moore semantics
in Stateflow.

Overview of Mealy and Moore
Machines (p. 5-2)

Describes the basic semantics of
Mealy and Moore machines

Creating Mealy and Moore Charts
(p. 5-5)

Describes the work flow for creating
Mealy and Moore charts

Design Considerations for Mealy
Charts (p. 5-8)

Describes best practices for
implementing Mealy semantics in
Stateflow

Design Considerations for Moore
Charts (p. 5-14)

Describes best practices for
implementing Moore semantics in
Stateflow

Changing Chart Type (p. 5-24) Presents guidelines for when you
should and should not change chart
types

Debugging Mealy and Moore Charts
(p. 5-25)

Explains how Stateflow helps you
debug Mealy and Moore charts

5 Building Mealy and Moore Charts in Stateflow

Overview of Mealy and Moore Machines
Mealy and Moore are often considered the basic, industry-standard paradigms
for modeling finite-state machines. Generally in state machine models, the
next state is a function of the current state and its inputs, as follows:

X n f X n u() ((),)+ =1

In this equation:

X(n) Represents the state at time step n

X(n+1) Represents the state at the next time step n+1

u Represents inputs

In this context, Mealy and Moore machines each have well-defined semantics.

Type of
Machine

Semantics Applications

Mealy Output is a function of inputs
and state:

y g X u= (,)

Clocked synchronous
machines where state
transitions occur on clock
edges

Moore Output is a function only of
state:

y g X= ()

Clocked synchronous
machines where outputs
are modified at clock edges

You can create Stateflow charts that implement pure Mealy or Moore
semantics as a subset of Stateflow semantics (see “Creating Mealy and Moore
Charts” on page 5-5). Mealy and Moore charts can be used in simulation and
code generation of C and hardware description language (HDL).

Note To generate HDL code from Stateflow charts, you must use Simulink
HDL Coder, available as a separate product.

5-2

Overview of Mealy and Moore Machines

The Default State Machine Type. When you create a chart in Stateflow, the
default type is a hybrid state machine model that combines the semantics of
Mealy and Moore charts with the extended semantics provided by Stateflow
(see Chapter 3, “Stateflow Semantics”). This default chart type is called
Classic.

What is State?. State is a combination of local data and chart activity.
Therefore, computing state means updating local data and making transitions
from a currently active state to a new state. State persists from one time step
to another. In Classic Stateflow, output behaves like state because output
values persist between time steps. However unlike state, output is available
outside the chart through output ports. By contrast, output in Mealy and
Moore charts does not persist and instead must be computed in each time step.

Availability of Output. Stateflow guarantees that the output of Mealy
and Moore machines is well defined at every time step by enforcing the
option Initialize Outputs Every Time Chart Wakes Up for these chart
types. This option initializes outputs to a default value whenever the chart
is triggered (see “Setting Properties for Individual Charts” on page 10-6).
Normally, charts compute output data in every execution. In this case,
computed outputs override the default values. However, when output is not
computed, the default value applies.

Mealy machines compute output on transitions, while Moore machines
compute outputs in states. Therefore, Mealy charts can compute output
earlier than Moore charts — that is, at the time Stateflow executes the chart’s
default path. If you enable the chart property Execute (enter) Chart At
Initialization, this computation occurs at t = 0 (first time step); otherwise, it
occurs at t = 1 (next time step). By contrast, Moore machines can compute
outputs only after Stateflow executes the default path. Until then, outputs
take the default values.

The following table summarizes the earliest time at which output can be
computed in Mealy and Moore charts:

5-3

5 Building Mealy and Moore Charts in Stateflow

Execute (enter) Chart
at Initialization

Mealy Computes
Outputs at:

Moore computes
Outputs at:

Enabled t = 0 t = 1

Disabled t = 1 t = 2

Advantages of Mealy and Moore Charts Over Classic Stateflow.
Mealy and Moore charts offer the following advantages over Classic Stateflow:

• Stateflow verifies the Mealy and Moore charts you create to ensure that
they conform to their formal definitions and semantic rules. Stateflow
reports violations at compile time (not at design time).

• Moore charts provide a more efficient implementation of Stateflow than
Classic charts, both for C and HDL targets.

5-4

Creating Mealy and Moore Charts

Creating Mealy and Moore Charts
To create a new Mealy or Moore chart, follow these steps:

1 Add a new Stateflow block to a Simulink model, then double-click the block
to open the Stateflow Editor.

2 Right-click in the Stateflow Editor and select Properties.

The Chart Properties dialog box opens on your desktop.

3 From the State Machine Type drop-down menu, select Mealy or Moore.

5-5

5 Building Mealy and Moore Charts in Stateflow

4 Click OK.

The Stateflow chart icon updates to display the selected chart type:

5-6

Creating Mealy and Moore Charts

Mealy Moore

The title bar of the Stateflow Editor also displays the selected chart type.

5 Design your chart according to the guidelines for the chart type (see “Design
Considerations for Mealy Charts” on page 5-8 and “Design Considerations
for Moore Charts” on page 5-14.

5-7

5 Building Mealy and Moore Charts in Stateflow

Design Considerations for Mealy Charts
To implement Mealy semantics in a Stateflow chart, you must use a restricted
subset of Stateflow semantics. This section explains how to design charts in
Stateflow that accurately model Mealy semantics.

• “Mealy Semantics” on page 5-8

• “Design Rules for Mealy Charts” on page 5-8

• “Example: Mealy Vending Machine” on page 5-11

Mealy Semantics
To ensure that output is a function of input and state, Mealy state machines
enforce the following semantics:

• Outputs never depend on previous outputs

• Outputs never depend on the next state

• Chart wakes up periodically based on a system clock

Note Stateflow provides one time base for input and clock (see “Calculate
Output and State Using One Time Base” on page 5-11).

• Chart must compute outputs whenever there is a change on the input port

• Chart must compute outputs only in transitions, not in states

Design Rules for Mealy Charts
To conform to the Mealy definition of a state machine, Stateflow must ensure
that a Mealy chart computes outputs every time there is a change on the input
port. As a result, Stateflow imposes a set of design rules for Mealy charts.

• “Compute Outputs in Condition Actions Only” on page 5-9

• “Do Not Use State Actions or Transition Actions” on page 5-9

• “Restrict Use of Data” on page 5-9

• “Restrict Use of Events” on page 5-10

5-8

Design Considerations for Mealy Charts

• “Initialize Outputs Every Time Chart Wakes Up” on page 5-10

• “Calculate Output and State Using One Time Base” on page 5-11

Compute Outputs in Condition Actions Only
You can compute outputs only in the condition actions of outer and inner
transitions. A common modeling style for Mealy machines is to test inputs in
conditions and compute outputs in the associated action.

Do Not Use State Actions or Transition Actions
You cannot use state actions or transition actions in Mealy charts. This
restriction enforces Mealy semantics by

• Preventing you from computing output without considering changes on
the input port

• Ensuring that output depends on current state and not next state

Restrict Use of Data
You can define inputs, outputs, local data, parameters, and constants in Mealy
charts, but other data restrictions apply:

• “Restrict Machine-Parented Data to Constants and Parameters” on page 5-9

• “Do Not Define Data Store Memory” on page 5-10

Restrict Machine-Parented Data to Constants and Parameters.
Machine-parented data is data that you define for a Stateflow machine, which
is the collection of all Stateflow blocks in a Simulink model. The Stateflow
machine is the highest level of the Stateflow hierarchy. When you define data
at this level, every Stateflow chart in the machine can read and modify the
data. To ensure that Mealy charts do not access data that can be modified
unpredictably outside the chart, Stateflow only allows you to define constants
and parameters at the machine level.

Note Stateflow parameters have constant value during simulation and code
generation.

5-9

5 Building Mealy and Moore Charts in Stateflow

Do Not Define Data Store Memory. You cannot define data store memory
(DSM) in Mealy charts because DSM objects can be modified by objects
external to the chart. Stateflow uses data store memory to share data with
Simulink. Data store memory acts as global data that can be modified by
other blocks and models in the Simulink hierarchy that contains the chart.
Mealy charts should not access data that can change unpredictably.

Restrict Use of Events
You must limit the use of events in Mealy charts as follows:

Do: Do Not:

Use input events to trigger the chart Broadcast any type of event

Use temporal logic to guard
transitions

You can use temporal logic in
Mealy charts because it behaves
synchronously. Think of the change
in value of a temporal logic condition
as an event that the chart schedules
internally. Therefore, at each time
step, the chart retains its notion of
state because it knows how many
ticks remain before the temporal
event executes.

Note In Mealy charts, the base
event for temporal logic operators
must be a predefined event such as
tick or wakeup (see “Referencing
Implicit Events” on page 7-24).

Use local or machine-parented
events to guard transitions

You cannot use local or
machine-parented events in
Mealy charts because they are not
deterministic. These events can
occur while the chart computes
outputs and, therefore, violate Mealy
semantics which require charts to
compute outputs whenever input
changes.

Initialize Outputs Every Time Chart Wakes Up
Stateflow automatically applies the initial value of outputs every time a Mealy
chart wakes up to prevent latching of outputs. This is a requirement for Mealy
charts to ensure that outputs do not depend on previous values of outputs.

5-10

Design Considerations for Mealy Charts

When you create a Mealy chart, Stateflow enforces the chart property
Initialize Outputs Every Time Chart Wakes Up . For more information
about this property, see “Setting Properties for Individual Charts” on page
10-6.

Calculate Output and State Using One Time Base
Stateflow provides one time base for clock and input, as determined by the
Simulink solver (see “Solvers”). The Simulink solver sets the clock rate to be
fast enough to capture input changes. As a result, in Mealy charts, Stateflow
commonly computes outputs and changes states in the same time step.

Example: Mealy Vending Machine
The following chart uses Mealy semantics to model a vending machine:

Logic of the Mealy Vending Machine
In this example, the vending machine requires 15 cents to release a can of
soda. The purchaser can insert a nickel or a dime, one at a time, to purchase

5-11

5 Building Mealy and Moore Charts in Stateflow

the soda. The chart behaves like a Mealy machine because its output soda
depends on both the input coin and current state, as follows:

When initial state got_0 is active. No coin has been received or no coins
are left.

• If a nickel is received (coin == 1), output soda remains 0, but state
got_nickel becomes active.

• If a dime is received (coin == 2), output soda remains 0, but state got_dime
becomes active.

• If input coin is not a dime or a nickel, state got_0 stays active and no
soda is released (output soda = 0).

In active state got_nickel. A nickel was received.

• If another nickel is received (coin == 1), state got_dime becomes active,
but no can is released (soda remains at 0).

• If a dime is received (coin == 2), a can is released (soda = 1), the coins are
banked, and the active state becomes got_0 because no coins are left.

• If input coin is not a dime or a nickel, state got_nickel stays active and
no can is released (output soda = 0).

In active state got_dime. A dime was received.

• If a nickel is received (coin == 1), a can is released (soda = 1), the coins are
banked, and the active state becomes got_0 because no coins are left.

• If a dime is received (coin == 2), a can is released (soda = 1), 15 cents
is banked, and the active state becomes got_nickel because a nickel
(change) is left.

• If input coin is not a dime or a nickel, state got_dime stays active and no
can is released (output soda = 0).

Design Rules in Mealy Vending Machine
This example of a Mealy vending machine illustrates the following Mealy
design rules:

5-12

Design Considerations for Mealy Charts

• The chart computes outputs in condition actions.

• There are no state actions or transition actions.

• The chart defines chart inputs (coin) and outputs (soda).

• The value of the input coin determines the output — whether or not soda
is released.

5-13

5 Building Mealy and Moore Charts in Stateflow

Design Considerations for Moore Charts
To implement Moore semantics in a Stateflow chart, you must use a restricted
subset of Stateflow semantics. This section explains how to design charts in
Stateflow that accurately model Moore semantics.

• “Moore Semantics” on page 5-14

• “Design Rules for Moore Charts” on page 5-14

• “Example: Moore Traffic Light” on page 5-20

Moore Semantics
In Moore charts, output is a function of current state only. At every time step,
a Moore chart wakes up, computes its outputs, and then evaluates its inputs
to reconfigure itself for the next time step. For example, after evaluating its
inputs, the Moore chart may take transitions to a new configuration of active
states, also called next state. However, the Moore chart must always compute
its outputs before changing state.

To ensure that output is a function only of state, Moore state machines enforce
the following semantics:

• Outputs depend only on the current state, not the next state

• Outputs never depend on previous outputs

• Chart must compute outputs only in states, not in transitions

• Chart must compute outputs before updating state

Design Rules for Moore Charts
To conform to the Moore definition of a state machine, Stateflow must ensure
that every time a Moore chart wakes up, it computes outputs from the current
set of active states without regard to input. As a result, Stateflow imposes a
set of design rules for Moore charts.

• “Compute Outputs in State Actions, Not on Transitions” on page 5-15

• “Restrict Data to Inputs, Outputs, and Constants” on page 5-17

• “Reference Input Only in Conditions” on page 5-18

5-14

Design Considerations for Moore Charts

• “Do Not Use Actions on Transitions” on page 5-19

• “Do Not Use Graphical Functions” on page 5-19

• “Restrict Use of Events” on page 5-19

• “Initialize Outputs Every Time Chart Wakes Up” on page 5-20

Compute Outputs in State Actions, Not on Transitions
To ensure that outputs depend solely on current state, you must compute
outputs in state actions, subject to the following restrictions:

• “Combine During and Exit Actions” on page 5-15

• “Allow Actions in Leaf States Only” on page 5-16

• “Do Not Label State Actions” on page 5-17

You cannot define actions on transitions because transitions almost always
depend on inputs. For example, if you compute outputs in a condition action
on a transition, Stateflow updates outputs whenever there is a change on the
input — a violation of Moore semantics.

Combine During and Exit Actions. For Classic charts, Stateflow allows
you to define different types of actions in states (see “State Action Types” on
page 8-3). Each action can consist of multiple command statements. However,
in Moore charts, Stateflow allows only one action per state, but executes the
action as both a during and exit action. This duality ensures that Stateflow
never exits a state before computing its outputs because:

• Stateflow executes the action while the state is active and there are no
valid transitions to take (like a during action)

• Stateflow also executes the action just before exiting the state to take a
valid transition (like an exit action)

In other words, all active states in Moore charts compute their outputs in a
consistent way whether an outer transition is valid or not.

To implement the duality of execution, the during and exit actions must be
identical, as in this example:

5-15

5 Building Mealy and Moore Charts in Stateflow

Moore states do not differentiate between during and exit actions, as
illustrated here:

Note There are no labels on state actions in Moore charts (see “Do Not Label
State Actions” on page 5-17).

Allow Actions in Leaf States Only. In Moore charts, you can add actions
only to leaf states. A leaf state is a state that resides at the lowest level of
the Stateflow hierarchy and, therefore, does not parent any other states. This
restriction ensures that when you compute outputs in state actions

• Outputs are not defined at multiple levels in the hierarchy with different
values

• Stateflow can use the same top-down semantics for executing Moore
charts as for Classic charts. In this way Stateflow computes outputs as if
it evaluates actions before inner and outer flow graphs and, therefore,
guarantees that the outputs will be identical for both chart types.

You can compute outputs in leaf states that have exclusive (OR) or parallel
(AND) decomposition. However, you should not compute the same outputs in
sibling parallel (AND) states because the values computed by the last state
executed will prevail, overwriting the previously computed values.

5-16

Design Considerations for Moore Charts

For descriptions of Stateflow chart execution semantics, see “Executing a
Chart” on page 3-6 and Semantic Rules Summary.

Do Not Label State Actions. Do not label state actions in Moore charts
with any keywords — such as du, during, ex, or exit. Stateflow executes the
state actions in Moore charts as during and exit actions automatically, as
explained in “Combine During and Exit Actions” on page 5-15. Moore charts
never execute entry actions because these actions always execute as the
result of a transition and, therefore, depend on inputs.

Restrict Data to Inputs, Outputs, and Constants
You can define inputs, outputs, parameters, and constants in Moore charts,
but other data restrictions apply:

• “Do Not Define Local Data” on page 5-17

• “Restrict Machine-Parented Data to Constants and Parameters” on page
5-17

• “Do Not Define Data Store Memory” on page 5-18

Do Not Define Local Data. You cannot define local data in Moore charts. In
Classic Stateflow charts, you can use local data to transfer inputs to outputs,
as in this example:

local_D = input_U;
output_Y = local_D;

However, in Moore charts, you compute outputs from current state only, but
never from local data. When a chart contains local data, Stateflow cannot
easily verify that outputs do not depend on inputs.

Restrict Machine-Parented Data to Constants and Parameters.
Machine-parented data is data that you define for a Stateflow machine, which
is the collection of Stateflow blocks in a Simulink model. The Stateflow
machine is the highest level of the Stateflow hierarchy. When you define data
at this level, every Stateflow chart in the machine can read and modify the
data. To ensure that Moore charts do not access data that can be modified
unpredictably outside the chart, Stateflow only allows you to define constants
and parameters at the machine level.

5-17

5 Building Mealy and Moore Charts in Stateflow

Note Stateflow parameters have constant value during simulation and code
generation.

Do Not Define Data Store Memory. You cannot define data store memory
(DSM) in Moore charts because DSM objects can be modified by objects
external to the chart. Stateflow uses data store memory to share data with
Simulink. Data store memory acts as global data that can be modified by
other blocks and models in the Simulink hierarchy that contains the chart.
Moore charts should not access data that can change unpredictably.

Reference Input Only in Conditions
In Classic Stateflow, you can you can test inputs in conditions on transitions,
and then modify outputs in associated condition actions and transition actions.
However in Moore charts, outputs can never depend on inputs. Therefore, you
can set up conditions on transitions that reference inputs, but you cannot add
actions to transitions that modify outputs based on those conditions. For
example, the following transitions are allowed in a Moore chart:

In this example, each transition tests input u in a condition, but modifies
output y in a state action.

By contrast, the following transitions are illegal in a Moore chart:

5-18

Design Considerations for Moore Charts

Here, each transition tests input u in a condition, but modifies output y in a
condition action, based on the value of the input. This construct violates
Moore semantics and generates a compiler error. Similarly, you cannot use
transition actions in Moore charts.

Do Not Use Actions on Transitions
You cannot define condition actions or transition actions in Moore charts (see
“Reference Input Only in Conditions” on page 5-18).

Do Not Use Graphical Functions
You cannot use graphical functions in Moore charts. This restriction prevents
scenarios that violate Moore semantics, such as

• Adding conditions that call functions which compute outputs as a side effect

• Adding state actions that call functions which reference inputs

Restrict Use of Events
You must limit the use of events in Moore charts as follows:

5-19

5 Building Mealy and Moore Charts in Stateflow

Do: Do Not:

Use input events to trigger the chart Broadcast any type of event

Use temporal logic to guard
transitions

You can use temporal logic in
Moore charts because it behaves
synchronously. Think of the change
in value of a temporal logic condition
as an event that the chart schedules
internally. Therefore, at each time
step, the chart retains its notion of
state because it knows how many
ticks remain before the temporal
event executes.

Note In Moore charts, the base
event for temporal logic operators
must be a predefined event such as
tick or wakeup (see “Referencing
Implicit Events” on page 7-24).

Use local or machine-parented
events to guard transitions

You cannot use local or
machine-parented events in
Moore charts because they are not
deterministic. These events can
occur while the chart computes
outputs and, therefore, violate Moore
semantics which require charts to
compute outputs whenever input
changes.

Initialize Outputs Every Time Chart Wakes Up
Stateflow automatically applies the initial value of outputs every time a Moore
chart wakes up to prevent latching of outputs. This is a requirement for Moore
charts to ensure that outputs do not depend on previous values of outputs.

When you create a Moore chart, Stateflow automatically enables the chart
property Initialize Outputs Every Time Chart Wakes Up and does not
allow you to disable it. For more information about this property, see “Setting
Properties for Individual Charts” on page 10-6.

Example: Moore Traffic Light
The following chart uses Moore semantics to model a traffic light:

5-20

Design Considerations for Moore Charts

Logic of the Moore Traffic Light
In this example, the traffic light model contains a Stateflow Moore chart called
Light_Controller, which operates in five traffic states. Each state represents
the color of the traffic light in two opposite directions — North-South and
East-West — and the duration of the current color. The name of each state
represents the operation of the light viewed from the North-South direction.

5-21

5 Building Mealy and Moore Charts in Stateflow

This chart uses temporal logic to regulate state transitions. The after
operator implements a countdown timer, which Stateflow initializes when the
source state is entered. By default, the timer provides a longer green light in
the East-West direction than in the North-South direction because the volume
of traffic is greater on the East-West road. The green light in the East-West
direction stays on for at least 20 clock ticks, but it can remain green as long as
no traffic arrives in the North-South direction. A sensor detects whether cars
are waiting at the red light in the North-South direction. If so, the light turns
green in the North-South direction to keep traffic moving.

The Light_Controller chart behaves like a Moore machine because it updates
its outputs based on current state before transitioning to a new state, as
follows:

When initial state Stop is active. Traffic light is red for North-South,
green for East-West.

• Sets output y1 = RED (North-South) based on current state

• Sets output y2 = GREEN (East-West) based on current state

• After 20 clock ticks, active state becomes StopForTraffic

In active state StopForTraffic. Traffic light has been red for North-South,
green for East-West for at least 20 clock ticks.

• Sets output y1 = RED (North-South) based on current state

• Sets output y2 = GREEN (East-West) based on current state

• Checks sensor

• If sensor indicates cars are waiting ([sens] is true) in the North-South
direction, active state becomes StopToGo

In active state StopToGo. Traffic light must reverse traffic flow in response
to sensor.

• Sets output y1 = RED (North-South) based on current state

• Sets output y2 = YELLOW (East-West) based on current state

• After 3 clock ticks, active state becomes Go.

5-22

Design Considerations for Moore Charts

In active state Go. Traffic light has been red for North-South, yellow for
East-West for 3 clock ticks.

• Sets output y1 = GREEN (North-South) based on current state

• Sets output y2 = RED (East-West) based on current state

• After 10 clock ticks, active state becomes GoToStop

In active state GoToStop. Traffic light has been green for North-South,
red for East-West for 10 clock ticks.

• Sets output y1 = YELLOW (North-South) based on current state

• Sets output y2 = RED (East-West) based on current state

• After 3 clock ticks, active state becomes Stop

Design Rules in Moore Traffic Light
This example of a Moore traffic light illustrates the following Moore design
rules:

• The chart computes outputs in state actions.

• Actions appear in leaf states only.

• Leaf states contain no more than one action.

• The chart tests inputs in conditions on transitions

• The chart uses temporal logic, but no asynchronous events

• The chart defines chart inputs (sens) and outputs (y1and y2)

5-23

5 Building Mealy and Moore Charts in Stateflow

Changing Chart Type
The best practice is not to change from one Stateflow chart type to another
in the middle of development. Stateflow does not automatically convert the
semantics of the original chart to conform to the design rules of the new chart
type. Changing type usually requires you to redesign your chart to achieve
equivalent behavior — that is, where both charts produce the same sequence
of outputs given the identical sequence of inputs. To assist you, Stateflow
provides informative diagnostic messages at compile time (see “Debugging
Mealy and Moore Charts” on page 5-25). In some cases, however, there may
be no way to translate specific behaviors without violating chart definitions.

Here is a summary of how Stateflow responds when you change chart types
mid-design:

From To Result

Mealy Classic Mealy charts retain their semantics when changed to
Classic type.

Classic Mealy If the Classic chart confirms to Mealy semantic rules, the
Mealy chart exhibits equivalent behavior, provided that
output is defined at every time step.

Moore Classic Stateflow interprets the state actions in the Moore chart as
entry actions because they are not labeled. Therefore, the
Classic chart will not exhibit behavior that is equivalent to
the original Moore chart. Requires redesign.

Classic Moore Stateflow interprets actions that are unlabeled in the
Classic chart (entry actions by default) as during and
exit actions. Therefore, the Moore chart will not exhibit
behavior that is equivalent to the original Classic chart.
Requires redesign.

Mealy Moore

Moore Mealy

Converting between these two types does not produce
equivalent behavior because Mealy and Moore rules about
placement of actions are mutually exclusive. Requires
redesign.

5-24

Debugging Mealy and Moore Charts

Debugging Mealy and Moore Charts
Stateflow verifies the semantics of Mealy and Moore charts at compile time
and provides informative diagnostic messages to help you

• Design Mealy and Moore charts from scratch

• Redesign legacy Classic charts to conform to Mealy and Moore semantics

• Redesign charts to convert between Mealy and Moore types

For example, recall the Mealy vending machine chart described in “Example:
Mealy Vending Machine” on page 5-11:

If you change the chart type to Moore and rebuild, Stateflow provides the
following diagnostics:

5-25

5 Building Mealy and Moore Charts in Stateflow

These diagnostics alert you to the fact that you cannot define actions on
transitions. Without actions, you cannot compute outputs on transitions
in Moore charts (see “Do Not Use Actions on Transitions” on page 5-19).
According to Moore semantics, you must instead compute outputs in state
actions (see “Design Rules for Moore Charts” on page 5-14).

In the Mealy chart, each condition action computes output (whether or not
soda is released) based on input (the coin received). Each state represents one
of the three possible coin inputs: nickel, dime, or no coin. Stateflow computes
the output as the Mealy chart transitions to the next state. When you move
this logic out of transitions and into state actions in the Moore chart, you need
more states. The reason is that in the Moore chart, each state must represent
not only coins received, but also the soda release condition. In the Moore
chart, Stateflow must compute output according to the active state before
considering input. As a result, there will be a delay in releasing soda, even if
the machine receives enough money to cover the cost.

Here is the equivalent vending machine, designed as a Moore chart:

5-26

Debugging Mealy and Moore Charts

The following table compares the semantics of the two charts:

Mealy Vending Machine Moore Vending Machine

Uses 3 states Uses 5 states

5-27

5 Building Mealy and Moore Charts in Stateflow

Mealy Vending Machine Moore Vending Machine

Computes outputs in condition
actions

Computes outputs in state actions

Updates output based on input Updates output before evaluating
input, requiring an extra time step
to produce the soda

Note For this vending machine, Mealy is a better modeling paradigm because
there is no delay in releasing soda once sufficient coins are received. By
contrast, the Moore vending machine requires an extra time step to pass
before producing soda. Since the Moore vending machine accepts a nickel,
a dime, or no coin in a given time step, it is possible that the soda will be
produced in a time step in which a coin is accepted toward the next purchase.
In this situation, the delivery of a soda may appear to be in response to this
coin, but actually occurs because the vending machine received the purchase
price in previous time steps.

5-28

6

Extending Stateflow Chart
Diagrams

This chapter takes you through the steps of extending Stateflow states,
transitions, and junctions with subcharts, boxes, functions, and notes. It
includes the following sections:

Using History Junctions to Extend
Charts and States (p. 6-3)

Describes how to create, move, and
specify properties for Stateflow
history junctions. History junctions
extend the abilities of charts and
states by recording their most
recently active substate.

Using Subcharts to Extend Charts
(p. 6-6)

Shows you how to create and work
with charts within charts, that
is, subcharts. Subcharts are a
convenience for compacting your
diagrams.

Using Supertransitions to Extend
Transitions (p. 6-12)

Shows you how to make a
supertransition to connect
transitions from outside a subchart
to a state or junction inside a
subchart.

Extending Transitions with Smart
Behavior (p. 6-19)

Shows you how smart transitions
maintain their shapes and
uniqueness while you rearrange
chart objects.

6 Extending Stateflow Chart Diagrams

Using Functions to Extend Actions
(p. 6-29)

Describes how Stateflow graphical
functions are created, called, and
made available to Simulink.
Graphical functions are a
convenience, as functions are
to programs.

Using Boxes to Extend Chart
Diagrams (p. 6-45)

Describes Stateflow boxes and how
to create them in your new chart.
Boxes are a convenience for grouping
items in your charts.

Using Notes to Extend Chart
Diagrams (p. 6-48)

Shows you how to create, edit, and
delete descriptive notes for your
Stateflow chart.

Reporting Chart Diagrams (p. 6-51) Shows you the options Stateflow
offers for printing part or all of your
Stateflow chart.

6-2

Using History Junctions to Extend Charts and States

Using History Junctions to Extend Charts and States
History junctions extend the ability of charts and states by recording the
activity of substates inside superstates. Use a history junction in a chart or
superstate to indicate that its last active substate becomes active when the
chart or superstate becomes active.

The following topics describe how to create, and specify properties for history
junctions in Stateflow:

• “Creating a History Junction” on page 6-3

• “Changing History Junction Size” on page 6-4

• “Changing History Junction Properties” on page 6-4

Creating a History Junction
To create a junction, do the following:

1 In the diagram toolbar, click the History Junction tool .

2 Move the cursor into the diagram editor.

The cursor takes on the shape of a junction.

3 Click to place a history junction inside the state whose last active substate
it records.

To create multiple history junctions, do the following:

1 In the diagram toolbar, double-click the History Junction tool.

2 The button is now in multiple object mode.

3 Click anywhere in the drawing area to place a history junction.

4 Move to and click another location to create an additional history junction.

5 Click the History Junction tool or press the Esc key to cancel the
operation.

6-3

6 Extending Stateflow Chart Diagrams

To move a history junction to a new location, click and drag it to the new
position.

Changing History Junction Size
To change the size of junctions, do the following:

1 Select the history junctions whose size you want to change.

2 Place the cursor over one of the junctions and right-click.

3 In the resulting submenu, place the cursor over Junction Size.

A menu of junction sizes appears.

4 Select a size from the menu of junction sizes.

Changing History Junction Properties
To edit the properties for a junction, do the following:

1 Right-click a junction.

2 In the resulting submenu select Properties.

The History Junction dialog appears as shown.

3 Edit the fields in the properties dialog, which are described in the following
table:

6-4

Using History Junctions to Extend Charts and States

Field Description

Parent Parent of this history junction; read-only; click
the hypertext link to bring the parent to the
foreground.

Description Textual description/comment.

Document Link Enter a URL address or a general
MATLAB command. Examples are
www.mathworks.com, mailto:email_address,
and edit/spec/data/speed.txt.

4 When finished editing, select one of the following:

• Select the Apply button to save the changes.

• Select the Cancel button to cancel any changes you’ve made.

• Select OK to save the changes and close the dialog box.

• Select the Help button to display the Stateflow online help in an HTML
browser window.

6-5

6 Extending Stateflow Chart Diagrams

Using Subcharts to Extend Charts
Subcharts are charts within charts. They help make your charts more
readable and compact. This topic describes how to create and work with
subcharts:

• “What Is a Subchart?” on page 6-6

• “Creating a Subchart” on page 6-7

• “Manipulating Subcharts as Objects” on page 6-8

• “Opening a Subchart” on page 6-9

• “Editing a Subchart” on page 6-10

• “Navigating Subcharts” on page 6-10

What Is a Subchart?
Stateflow allows you to create charts within charts. A chart that is embedded
in another chart is called a subchart. The subchart can contain anything a
top-level chart can, including other subcharts. In fact, you can nest subcharts
to any level.

A subcharted state is a superstate of the states and charts that it contains.
It appears as a block with its name in the block center. However, you can
define actions and default transitions for subcharts just as you can for
superstates. You can also create transitions to and from subcharts just as
you can create transitions to and from superstates. Further, you can create
transitions between states residing outside a subchart and any state within
a subchart. The term supertransition refers to a transition that crosses
subchart boundaries in this way. See “Using Supertransitions to Extend
Transitions” on page 6-12 for more information.

Subcharts enable you to reduce a complex chart to a set of simpler,
hierarchically organized diagrams. This makes the chart easier to understand
and maintain. Nor do you have to worry about changing the semantics of the
chart in any way. Stateflow ignores subchart boundaries when simulating and
generating code from Stateflow models.

Subcharts define a containment hierarchy within a top-level chart. A subchart
or top-level chart is said to be the parent of the charts it contains at the first

6-6

Using Subcharts to Extend Charts

level and an ancestor of all the subcharts contained by its children and their
descendants at lower levels.

Creating a Subchart
You create a subchart by converting an existing state, box, or graphical
function into the subchart. The object to be converted can be one that you
have created expressly for the purpose of making a subchart or it can be an
existing object whose contents you want to turn into a subchart.

To convert a new or existing state, box, or graphical function to a subchart:

1 Select the object and right-click a state (SC1 in the example below) to
display the Stateflow shortcut menu for that state.

2 Select Make Contents from the resulting menu.

3 Select Subcharted from the resulting submenu.

Stateflow converts the state (or a graphical function or box) to a subchart.

6-7

6 Extending Stateflow Chart Diagrams

Note When you convert a box to a subchart, the subchart retains the
attributes of a box. In particular, the resulting subchart’s position in the chart
determines its activation order (see “Using Boxes to Extend Chart Diagrams”
on page 6-45 for more information).

To convert the subchart back to its original form, right-click the subchart.
In the pop-up menu that results, select Make Contents. In the resulting
submenu select the Subcharted item.

Caution You cannot undo the operation of converting a subchart back to its
original form. When you perform this operation, the undo and redo buttons
are disabled from undoing and redoing any prior operations.

Manipulating Subcharts as Objects
Subcharts also act as individual objects in Stateflow. You can move, copy,
cut, paste, relabel, and resize subcharts as you would states and boxes. You

6-8

Using Subcharts to Extend Charts

can also draw transitions to and from a subchart and any other state or
subchart at the same or different levels in the chart hierarchy (see “Using
Supertransitions to Extend Transitions” on page 6-12).

Opening a Subchart
Opening a subchart allows you to view and change its contents. To open a
subchart, do one of the following:

• Double-click anywhere in the box that represents the subchart.

• Select the box representing the subchart and press the Enter key.

Stateflow replaces the current diagram editor display with the contents of
the subchart, as shown.

A shaded border surrounds the contents of the subchart. Stateflow uses the
border to display supertransitions.

6-9

6 Extending Stateflow Chart Diagrams

To return to the previous view, select Back from the Stateflow shortcut
menu, press the Esc key on your keyboard, or select the up or back arrow on
the Stateflow toolbar.

Editing a Subchart
After you open a subchart (see “Opening a Subchart” on page 6-9), you can
perform any editing operation on its contents that you can perform on a
top-level chart. This means that you can create, copy, paste, cut, relabel, and
resize the states, transitions, and subcharts in a subchart. You can also group
states, boxes, and graphical functions inside subcharts.

You can also cut and paste objects between different levels in your chart. For
example, to copy objects from a top-level chart to one of its subcharts, first
open the top-level chart and copy the objects. Then open the subchart and
paste the objects into the subchart.

Transitions from outside subcharts to states or junctions inside subcharts are
called supertransitions. You create supertransitions differently than you do
ordinary transitions. See “Using Supertransitions to Extend Transitions” on
page 6-12 for information on creating supertransitions.

Navigating Subcharts
The Stateflow toolbar contains a set of buttons for navigating a chart’s
subchart hierarchy.

Tool Description

If the Stateflow editor is displaying a subchart, replaces the
subchart with the subchart’s parent in the editor. If the editor
is displaying a top-level chart, this button raises the Simulink
model window containing that chart.

Returns to the chart that you visited before the current chart.
Lets you navigate up the hierarchy.

Returns to the chart that you visited after visiting the current
chart. Lets you navigate down the hierarchy.

6-10

Using Subcharts to Extend Charts

Note You can also use the key sequence .. (that is, press the period key twice)
to navigate up to the parent object for a subcharted state, box, or function.

6-11

6 Extending Stateflow Chart Diagrams

Using Supertransitions to Extend Transitions
Supertransitions connect transitions from outside a subchart to an
object inside a subchart. The following topics explain how to work with
supertransitions:

• “What Is a Supertransition?” on page 6-12

• “Drawing a Supertransition Into a Subchart” on page 6-13

• “Drawing a Supertransition Out of a Subchart” on page 6-16

• “Labeling Supertransitions” on page 6-17

What Is a Supertransition?
A supertransition is a transition between different levels in a chart, for
example, between a state in a top-level chart and a state in one of its
subcharts, or between states residing in different subcharts at the same or
different levels in a diagram. Stateflow allows you to create supertransitions
that span any number of levels in your chart, for example, from a state at the
top level to a state that resides in a subchart several layers deep in the chart.

The point where a supertransition enters or exits a subchart is called a slit.
Slits divide a supertransition into graphical segments. For example, the
following diagram shows two supertransitions as seen from the perspective of
a subchart and its parent chart, respectively.

6-12

Using Supertransitions to Extend Transitions

In this example, supertransition t1 goes from state A in the parent chart
to state C in the subchart and supertransition t2 goes from state C in the
subchart to state B in the parent chart. Note that both segments of t1 and t2
have the same label.

Drawing a Supertransition Into a Subchart
Use the following steps to draw a supertransition from an object outside a
subchart to an object inside the subchart.

Caution You cannot undo the operation of drawing a supertransition. When
you perform this operation, the undo and redo buttons are disabled from
undoing and redoing any prior operations.

6-13

6 Extending Stateflow Chart Diagrams

1 Position the mouse cursor over the border of the state.

The cursor assumes the crosshairs shape.

2 Drag the mouse.

Dragging the mouse causes a supertransition segment to appear. The
segment looks like a regular transition. It is curved and is tipped by an
arrowhead.

3 Drag the segment’s tip anywhere just inside the border of the subchart.

The arrowhead now penetrates the slit.

If you are not happy with the initial position of the slit, you can continue to
drag the slit around the inside edge of the subchart to the desired location.

4 Continue dragging the cursor toward the center of the subchart.

A wormhole appears in the center of the subchart.

6-14

Using Supertransitions to Extend Transitions

A wormhole allows you to open a subchart while drawing a supertransition.

5 Drag the mouse pointer over the center of the wormhole.

The subchart opens. Now the wormhole and supertransition are visible
inside the subchart.

6 Drag and drop the tip of the supertransition anywhere on the border of the
object that you want to terminate the transition.

6-15

6 Extending Stateflow Chart Diagrams

Note If the terminating object resides within a subchart in the current
subchart, continue to drag the tip of the supertransition through the
wormhole of the inner subchart and complete the connection inside the
inner chart. In this way, you can draw a supertransition to an object at any
subchart depth in the chart.

Drawing a Supertransition Out of a Subchart
Use the following steps to draw a supertransition out of a subchart.

Caution You cannot undo the operation of drawing a supertransition. When
you perform this operation, the undo and redo buttons are disabled from
undoing and redoing any prior operations.

1 Draw an inner transition segment from the source object anywhere just
outside the border of the subchart

A slit appears as shown.

2 Keep dragging the transition away from the border of the subchart.

A wormhole appears.

6-16

Using Supertransitions to Extend Transitions

3 Drag the transition down the wormhole.

The parent of the subchart appears.

4 Complete the connection.

Note If the parent chart is itself a subchart and the terminating object
resides at a higher level in the subchart hierarchy, you can continue
drawing by dragging the supertransition into the border of the parent
subchart. This allows you to continue drawing the supertransition at the
higher level. In this way, you can connect objects separated by any number
of layers in the subchart hierarchy.

Labeling Supertransitions
A supertransition is displayed with multiple resulting transition segments for
each layer of containment traversed. For example, if you create a transition
between a state outside a subchart and a state inside a subchart of that
subchart, you create a supertransition with three segments, each displayed at
a different containment level.

6-17

6 Extending Stateflow Chart Diagrams

You can label any one of the transition segments constituting a supertransition
using the same procedure used to label a regular transition (see “Labeling
Transitions” on page 4-17). The resulting label appears on all the segments
that constitute the supertransition. Also, if you change the label on any one of
the segments, the change appears on all segments.

6-18

Extending Transitions with Smart Behavior

Extending Transitions with Smart Behavior
Transitions with smart behavior — known as smart transitions — attach their
ends to the surfaces of Stateflow objects and, therefore, maintain their shapes
and uniqueness when you rearrange chart objects.

The following topics explain how to work with smart transitions:

• “Setting Smart Behavior in Transitions” on page 6-19

• “What Smart Transitions Do” on page 6-20

• “What Nonsmart Transitions Do” on page 6-26

Setting Smart Behavior in Transitions
Transitions are automatically created with smart behavior, on the assumption
that this behavior is desirable in most circumstances. You can disable or
enable smart behavior in existing transitions with the following procedure:

1 Right-click a transition.

On the resulting menu, observe the selection titled Smart. If a check mark
appears in front of Smart, the transition has smart behavior.

2 If Smart is not checked, select it to enable smart behavior.

To disable smart transition behavior, select Smart if it is already checked.

See the following sections for a comparison of behavior between smart and
nonsmart transitions:

• “What Smart Transitions Do” on page 6-20

• “What Nonsmart Transitions Do” on page 6-26

Note Transitions with smart behavior differ graphically only. Apart from
graphical behavior, there is no difference in meaning between a transition
with and without smart behavior.

6-19

6 Extending Stateflow Chart Diagrams

What Smart Transitions Do
The following topics discuss some of the behaviors of smart transitions:

• “Smart Transitions Slide Around Surfaces” on page 6-20

• “Smart Transitions Slide and Maintain Shape” on page 6-21

• “Smart Transitions Connect States to Junctions at 90 Degree Angles” on
page 6-22

• “Smart Transitions Snap to an Invisible Grid” on page 6-24

• “Smart Transitions Bow Symmetrically” on page 6-25

Smart Transitions Slide Around Surfaces
In the following example, state B is attached to state A by a smart transition.
The example shows state B being dragged counterclockwise around the upper
right corner of state A. When this occurs, state B turns to its selection color
and the transition turns to a very light shade of gray, a sure sign of smart
behavior. Dragging direction is shown by the arrows.

1 2 3

4 5 6

Note the following step-by-step behavior for the preceding example:

6-20

Extending Transitions with Smart Behavior

1 The first capture shows states A and B at the beginning of movement.

2 As B moves upward, the transition’s back end slides upward on A,
maintaining the transition straight.

3 As B moves around A’s corner, the back end of the transition suddenly hops
around A’s upper right-hand corner. The transition is now curved from
A’s top surface to B’s left side, maintaining perpendicularity with each
attached state side.

Note A hop around a state’s corner is a necessity because transitions are
restricted from attaching at corners of states.

4 As B moves on top of A, the transition stays curved but its front end slides
down to B’s lower left-hand corner.

5 As B continues to move to the left over A, the transition’s front end hops
around B’s lower left-hand corner.

6 Finally, as B moves directly over A, the transition’s front end slides onto
B’s bottom edge.

As B continues to circle A, steps 1 through 6 repeat for each of A’s remaining
sides.

Smart Transitions Slide and Maintain Shape
While transitions with smart behavior allow their ends to slide around the
surfaces of their connected objects, they also attempt to maintain their
original shape during moving. In the following example, a pair of transitions
with smart behavior slide during a resizing to maintain their original shape.

6-21

6 Extending Stateflow Chart Diagrams

1 2 3

In the following example, the ends of a pair of transitions with smart behavior
emanate from a junction and terminate in a state. As the junction is dragged
around the state, the ends slide around the state and maintain the same
relative spacing between each other. Direction is indicated by the arrows.

1 2 3

Smart Transitions Connect States to Junctions at 90 Degree
Angles
Straight-line connections to states must be in one of four directions: left,
right, up, or down. To maintain their straightness, smart transitions from
junctions always seek to connect to a state through equivalent locations on
the junction (left, right, top, bottom). In the following example, a junction is
connected to two states, A and B. Watch the behavior of two straight smart
transitions as the junction is moved to different locations.

6-22

Extending Transitions with Smart Behavior

1 2 3

4 5 6

1 The junction starts with two straight smart transition connections to states
A and B.

2 Stateflow chooses to connect the junction to state A through the junction’s
left side. Since the junction is below A, only a curved connection is possible.

State B could be connected by a straight line through the junction’s left
side, but this is already occupied by the connection to A. Therefore, B is
connected through the junction’s bottom, and must be curved.

3 Stateflow connects the junction to B by a straight transition through the
junction’s top connection. No straight-line connection to A is possible,
therefore the junction is connected to state A with a curved transition
through its left side.

4 At this location (under A, to the left of B), straight-line transitions to A
and B are possible from the junction’s top and right connection points,
respectively.

6-23

6 Extending Stateflow Chart Diagrams

5 At the location left of state A, Stateflow chooses to connect to state B
through its right connection point. Since the junction is above B, only a
curved connection is possible.

6 Above A, a straight-line transition to state A is possible through the
junction’s bottom connector. A straight-line connection to state B is not
possible, so the junction is connected to state B through a curved transition
from its right connection.

Smart Transitions Snap to an Invisible Grid
Junctions that are connected to other junctions with smart transitions will
snap to an invisible grid consisting of horizontal and vertical lines that pass
through the center of each junction. The following example depicts this
behavior.

1 2 3

Here, the invisible grid is depicted for each of the three junctions by dashed
vertical and horizontal lines. Each junction is connected to each other through
nonlinear smart transitions:

1 In the first scene, the snap grid for each junction does not overlap. The
arrow indicates that junction A is being moved toward the vertical snap
line for junction B.

2 When A is within a very small distance of B’s snap line, A snaps into
position directly above B and centered in its vertical snap line. The arrow
indicates that A is now being moved toward the horizontal snap line for
junction C.

3 When A is within a very small distance of C’s horizontal snap line, A snaps
into position directly to the side of C and centered in its horizontal snap line.

6-24

Extending Transitions with Smart Behavior

Smart Transitions Bow Symmetrically
Transitions with smart behavior bow symmetrically between junctions. In
the following examples, transitions with smart behavior are drawn between
two junctions:

1 2 3

1 In the first case, a transition originates at the junction on the left and
terminates on the left side of the right junction. This results in a straight
line.

2 In the second case, a transition originates at the junction on the left and
terminates on the top of the right junction. This results in a transition
line bowed up.

3 In the third case, a transition originates at the junction on the left and
terminates on the right side of the right junction. This results in a
transition line bowed up even more.

Bowed smart transitions maintain symmetry by maintaining equality
between transition entry and exit angles as shown below.

6-25

6 Extending Stateflow Chart Diagrams

You can bow a smart transition between two junctions to any degree by
placing the mouse cursor on any point in the transition (except the attachment
points) and clicking and dragging in a direction perpendicular to a straight
line connecting the two junctions. You can move the mouse in any direction to
bow the transition but Stateflow only uses the component perpendicular to
the line connecting the two junctions.

Disabling smart behavior for a transition allows you to distort the transition
asymmetrically (see section “Nonsmart Transitions Distort Asymmetrically”
on page 6-27). However, if you enable smart behavior again, the transition
automatically returns to its prior symmetric bowed shape.

What Nonsmart Transitions Do
The following topics describe some of the behavior exhibited by transitions
without smart behavior.

• “Nonsmart Transitions Anchor Connection Points” on page 6-26

• “Nonsmart Transitions Distort Asymmetrically” on page 6-27

You can disable and enable smart behavior in transitions. See the section
“Setting Smart Behavior in Transitions” on page 6-19.

Nonsmart Transitions Anchor Connection Points
Contrast the example in the section “Smart Transitions Slide Around
Surfaces” on page 6-20 with the example shown below.

6-26

Extending Transitions with Smart Behavior

1 2 3

4 5 6

A nonsmart transition connects state A to state B. The mouse cursor is then
placed over state B and clicked and dragged to new locations counterclockwise
around A. When this occurs, state B turns to its highlight color but the
transition remains unchanged, a sure sign of a nonsmart transition.

As B is moved around A, the transition changes into a distorted curve that
seeks to maintain the original attachment points. These remain unchanged
in position, although the angle of attachment is always perpendicular to the
side of the state.

Nonsmart Transitions Distort Asymmetrically
Simply by clicking and dragging on different locations along a transition
without smart behavior, you can reshape it into an asymmetric curve suited to
your individual preferences. This is illustrated in the following example:

6-27

6 Extending Stateflow Chart Diagrams

1 2 3

For this example, use the following procedure:

1 Drag a horizontal transition between two junctions.

2 Right-click the transition and select Smart from the resulting shortcut
menu to disable smart behavior.

3 Place the mouse cursor on any point on the transition.

4 Click and drag the mouse cursor up and to the left.

6-28

Using Functions to Extend Actions

Using Functions to Extend Actions
A function in Stateflow is an extension of Stateflow actions. You define a
program once in a function, but call it as many times as you need to using
Stateflow action language.

Stateflow defines three types of functions: graphical, truth table, and
Embedded MATLAB. This section describes graphical functions:

• “Creating a Graphical Function” on page 6-29

• “Programming Different Types of Functions” on page 6-33

• “Defining Graphical Function Data” on page 6-39

• “Calling Graphical Functions in Stateflow” on page 6-41

• “Exporting Graphical Functions” on page 6-41

• “Specifying Graphical Function Properties” on page 6-42

For information about other types of Stateflow functions, see Chapter 12,
“Truth Table Functions” and Chapter 13, “Using Embedded MATLAB
Functions”.

Creating a Graphical Function
You create a Stateflow graphical, truth table, or embedded MATLAB function
in Stateflow diagrams with the following steps:

1 Select a drawing tool for the function from the Stateflow drawing toolbar as
follows:

Tool Function

Graphical

Truth Table

Embedded MATLAB

6-29

6 Extending Stateflow Chart Diagrams

2 Move the cursor to the location for the new function and click to place it.

The new function appears as an unnamed object in the Stateflow diagram
editor with a flashing text cursor as seen in the following graphical function
example.

The new function also appears in the Model Explorer as a child of the
chart or state in which it is drawn. In the following example, a graphical
function is added to its parent Stateflow chart, myChart.

A function can reside anywhere in a chart, state, or subchart. The location
of a function determines its scope, that is, the set of states and transitions
that can call the function. In particular, functions are visible to the chart,
to the parent state and its parents, and to sibling transitions and states
with the following exceptions.

• If the chart containing the function exports its graphical functions, the
scope of the function is the entire Stateflow machine, which encompasses
all the charts in the model. See “Exporting Graphical Functions” on
page 6-41 for more information.

6-30

Using Functions to Extend Actions

• A function defined in a state or subchart overrides any functions of the
same name defined in the parents and ancestors of that state or subchart.

3 Enter the function signature and click outside of the function box.

The function signature specifies a name for the function and formal names
for its arguments and return value. A signature has the following syntax:

r = func(a1,a2,...an)

where func is the function’s name, a1, a2, an are formal names for its
arguments, and r is the formal name for its return value (only one
return is allowed). Arguments and return values can be scalars, vectors,
or 2-dimensional matrices of any type. Matrices with a row or column
dimension of 1 are treated as row or column vectors, respectively.

The following example shows a signature for a graphical function named f1
that takes two arguments, a and b, and returns a value y.

Notice that the function box in the preceding example has been enlarged to
accommodate the width of its label signature. You enlarge function boxes in
their corners, just as for state and box objects.

The signature for a function appears as a property of its owning object in
the Model Explorer.

6-31

6 Extending Stateflow Chart Diagrams

If you expand the parent object in the Model Explorer, you can see
the return values and arguments that you declare in the signature for a
function as data items parented by the function.

The Scope field in the Explorer indicates the role of each argument or
return value. Arguments have the scope Function input, and return
values have scope Function output.

6-32

Using Functions to Extend Actions

Note You can use the Stateflow diagram editor to change the signature of
a graphical function at any time. When you are done editing the signature,
Stateflow updates the data dictionary and the Model Explorer to reflect
the changes.

Programming Different Types of Functions
In “Creating a Graphical Function” on page 6-29, you learn how to create a
function with a return value and arguments in a Stateflow diagram. In the
context of programming a function, arguments and return values have local
scope. They are visible only in the environment that programs the function.
This topic introduces you to the environment for each function in which you
program its behavior with the function subtopics that follow.

Graphical Functions
A Stateflow graphical function is a program written with Stateflow flow
graphs using connective junctions and transitions. You create a graphical
function, fill it with a flow diagram, and call it repeatedly in the actions of
states and transitions.

Because a function must execute completely when it is called, states are not
allowed in graphical functions. When a state is entered, execution stops until
an event occurs.

At a minimum, the flow diagram must include a default transition with a
terminating junction. The following example shows a minimal flow diagram
for a graphical function that returns the product of its arguments.

You can make a graphical function as complicated and as long as you want.
However, because complicated graphical functions can become very large, it

6-33

6 Extending Stateflow Chart Diagrams

may be difficult to fit it into the Stateflow diagram. To make the function
smaller, hide the function’s contents by selecting Subcharted from the Make
Contents menu of the function’s shortcut menu. This makes the graphical
function opaque as shown.

To access the programming of a subcharted graphical function, double-click
it. This dedicates the entire Stateflow diagram window to programming the
function, as shown.

To access the original Stateflow diagram, select the Back button .

6-34

Using Functions to Extend Actions

Truth Table Functions
You program a truth table in the truth table editor. Access this editor for
a truth table by double-clicking it in the Stateflow diagram, and the truth
table editor appears.

Truth table functions in Stateflow are very suitable for implementing
functions with logical behavior. You program truth tables with logical
behavior in the form of action language conditions, decisions, and actions. For
example, the following truth table

6-35

6 Extending Stateflow Chart Diagrams

implements the following logic expressed in pseudocode:

Description Pseudocode

Decision 1
Decision 1 Action if ((x == 1) & !(y == 1) & !(z == 1))

t = 1;

Decision 2
Decision 2 Action elseif (!(x == 1) & (y == 1) !(z == 1))

t = 2;

6-36

Using Functions to Extend Actions

Description Pseudocode

Decision 3
Decision 3 Action elseif (!(x == 1) & !(y == 1) (z == 1))

t = 3;

Default Decision
Default Decision Action else

t = 4;
endif

When you try to simulate your truth tables, Stateflow detects whether they
are underspecified or overspecified. Underspecified truth tables contain
fewer than all possible decisions for the conditions you specify. Overspecified
truth tables contain redundant decisions that prevent other decisions from
being evaluated. Stateflow detects both underspecified and overspecified
truth tables and tells you the decisions you need to specify or remove in the
truth table.

See Chapter 12, “Truth Table Functions”, for a thorough understanding of
truth table functions in Stateflow.

Embedded MATLAB Functions
You program an embedded MATLAB function in the Embedded MATLAB
Editor. Access this editor for an embedded MATLAB function by
double-clicking it in the Stateflow diagram. The following is an example of a
newly created function in Stateflow that you open to program:

6-37

6 Extending Stateflow Chart Diagrams

You program embedded MATLAB functions just like you would a MATLAB
function. Embedded MATLAB functions in Stateflow use a rich subset of
MATLAB language and functions to generate code for applications that can
reside in target applications with operating systems and platforms that have
strict memory and data type requirements.

The following embedded MATLAB function calculates a mean and a standard
deviation for a set of value input to the function as a vector argument:

6-38

Using Functions to Extend Actions

For a detailed example and information on programming embedded
MATLAB functions in Stateflow, see Chapter 13, “Using Embedded MATLAB
Functions”.

Defining Graphical Function Data
Before you can finish a function, you need to define all or some of its data.
Use the following steps to define data for a Stateflow function:

1 Specify the data properties (data type, initial value, and so on) for the
function arguments and return value.

• Change data properties directly in the Contents pane of the Model
Explorer by clicking values in the displayed columns for a data row.

• Change data properties in the Data dialog for a data.

If you right-click a data row in the Model Explorer and select
Properties from the resulting pop-up menu, its Data dialog appears.
See “Setting Data Properties in the Data Dialog” on page 7-31 for
information on setting data properties.

6-39

6 Extending Stateflow Chart Diagrams

The following restrictions apply to setting properties for the arguments and
return value of a function:

• Each argument and the return value can be a scalar or matrix of values.

• A function can have only one return.

• Arguments cannot have initial values.

2 Create any additional data items that the function might need to process
its programming when it is called.

A function can access its own data or data belonging to parent states or the
chart. The items that you create for the function itself can have any of
the following scopes:

• Local

A local data item persists from invocation to invocation. For example, if
the item is equal to 1 when the function returns from one invocation, the
item will equal 1 the next time the function is invoked.

• Temporary

Stateflow creates and initializes a copy of a temporary item for each
invocation of the function.

• Constant

Constant data retains its initial value through all invocations of the
function.

All data items (other than arguments and return values) parented by a
function can be initialized from the workspace. However, only local items
can be saved to the workspace.

It is not necessary to assign local data to an Embedded MATLAB function.
You create local data in an Embedded MATLAB function simply by using
it. In this case, Stateflow uses first use assignments to determine the type,
size, and value of the local data. See “Creating Local Variables Implicitly”
in Simulink documentation.

6-40

Using Functions to Extend Actions

Calling Graphical Functions in Stateflow
Once you create a graphical function, you use it by calling it in Stateflow
action language. Any state or transition action in the scope of a function
can call that function. The calling syntax is the same as that of the function
signature, with actual arguments replacing the formal parameters specified
in the signature. If the data types of the actual and formal argument differ,
Stateflow casts the actual argument to the type of the formal parameter.

The following example shows a state entry action that invokes a graphical
function that returns the product of its arguments.

Exporting Graphical Functions
You can export the root-level functions of a chart to the remaining charts in
the chart’s model. Exporting a chart’s functions extends their scope to include
all other charts in the same model.

You can also export functions in library charts to a model as long as the library
charts are present in the model. To export a chart’s root-level functions, select
Export Chart Level Functions on the chart’s Chart Properties dialog box
(see “Specifying Chart Properties” on page 10-6).

In the following example, the model main_model has two library Stateflow
charts, lib1Chart and lib2Chart:

6-41

6 Extending Stateflow Chart Diagrams

Both lib1Chart and lib2Chart are dragged into the model main_model
from the library models lib1 and lib2 in which they were created. In the
properties dialog for all three charts, the Export Chart Level Functions
option is selected. Each chart now defines a graphical function that can be
called by any other chart placed in main_model.

The sequence of action in simulation of main_model is as follows:

• The chart modChart calls the graphical function lib1_func, with the two
arguments, x and y.

• lib1_func calls the graphical function lib2_func, passing the same two
arguments.

• lib2_func calls the graphical function mod_func, which adds x and y.

• The result of the addition is assigned to x.

Specifying Graphical Function Properties
You can set general properties for a graphical function through its function
dialog as follows:

6-42

Using Functions to Extend Actions

1 Right-click the graphical function box.

2 Select Properties from the resulting submenu.

The Function Properties dialog for the graphical function appears, as
shown:

The fields in the Function Properties dialog are as follows:

Field Description

Name Function name; read-only; click this hypertext link
to bring the function to the foreground in its native
diagram.

Breakpoints Select Function Call to set a breakpoint to pause
execution during simulation when the graphical
function is called.

6-43

6 Extending Stateflow Chart Diagrams

Field Description

Function Inline
Option

This option controls the inlining of this function in
generated code through the following selections:

• Auto
Stateflow decides whether or not to inline the
function based on an internal calculation.

• Inline
Stateflow inlines the function as
long as it is not exported to other charts and is
not part of a recursion. A recursion exists if the
function calls itself either directly or indirectly
through another called function.

• Function
The function is not inlined.

Label You can specify the signature label for the function
through this field. See “Creating a Graphical
Function” on page 6-29 for more information.

Description Textual description/comment.

Document Link Enter a URL address or a general
MATLAB command. Examples are
www.mathworks.com, mailto:email_address,
and edit/spec/data/speed.txt.

6-44

Using Boxes to Extend Chart Diagrams

Using Boxes to Extend Chart Diagrams
Boxes are a convenience for organizing related items in your charts. The
following topics explain how to use boxes in Stateflow diagrams:

• “Creating a State” on page 6-45

• “Changing a State to a Box” on page 6-46

• “Using Boxes in Stateflow” on page 6-47

Creating a State
Like states, you create boxes by drawing them in the Stateflow diagram editor
with the box tool shown below:

1 Select the Box tool.

6-45

6 Extending Stateflow Chart Diagrams

2 Move your cursor into the drawing area.

In the drawing area, the mouse cursor becomes box-shaped.

3 Click in a particular location to create a box.

The created box appears with a question mark (?) name in its upper
left-hand corner.

4 Click the question mark label.

A text cursor appears in place of the question mark.

5 Enter a name for the box and click outside of the box when finished.

To delete a box, click it to select it and choose Cut (Ctrl+X) from the Edit or
any shortcut menu or press the Delete key.

You can change a state to a box or a box to a state. See “Changing a State to a
Box” on page 6-46 for details.

Changing a State to a Box
You can change an existing state to a box and back to a state with the
following procedure:

1 Right-click the state.

A shortcut pop-up menu appears.

2 From the pop-up menu, select Type.

A submenu appears adjacent to the pop-up menu.

3 From the submenu, select Box.

Stateflow converts the state to a box, redrawing its border with sharp
corners to indicate its changed status.

4 Repeat the preceding steps on the box and select State from the submenu
instead of Box to change the box to a state

6-46

Using Boxes to Extend Chart Diagrams

Using Boxes in Stateflow
Once you create a box you can use it in one of the following ways:

• You can move or draw objects inside of a box to organize your diagram.

You can draw the box first as a state around the objects you want inside it
and then convert it to a box.

• You can add data to a box so that all the elements in the box can share
the same data.

• You can group a box and its contents into a single graphical element .

See “Grouping States” on page 4-8.

• You subchart a box to hide its elements.

See “Using Subcharts to Extend Charts” on page 6-6 for more information.

For the most part, boxes do not contribute to the semantics of a Stateflow
diagram. They do, however, affect the activation order of a diagram’s parallel
states. A box wakes up before any parallel states or boxes that are lower or to
the right of it in a Stateflow diagram. Within a box, parallel states still wake
up in top-down, left to right order.

6-47

6 Extending Stateflow Chart Diagrams

Using Notes to Extend Chart Diagrams
The following topics describe how to create, edit, and delete descriptive notes
in Stateflow charts:

• “Creating Notes” on page 6-48

• “Editing Existing Notes” on page 6-48

• “Changing Note Font and Color” on page 6-49

• “Moving Notes” on page 6-50

• “Deleting Notes” on page 6-50

Creating Notes
You can enter comments/notes in any location on the chart with the following
procedure:

1 Place the cursor at the desired location in the Stateflow chart.

2 Right-click the mouse.

3 From the resulting menu, select Add Note.

A blinking cursor appears at the location you selected. Default text is italic,
9 point.

4 Begin typing your comments.

As you type, the text moves left to right.

5 Press the Return key to start a new line.

6 When finished typing, click outside the typed note text.

Editing Existing Notes
To edit existing note text,

1 Left-click the mouse on the comment location you want to edit.

6-48

Using Notes to Extend Chart Diagrams

2 Once the blinking cursor appears, begin typing or use the arrow keys to
move to a new text location.

Changing Note Font and Color
To change font and color for your Stateflow chart notes, follow the procedures
described in the section “Specifying Colors and Fonts” on page 4-30.

You can also change your note text to bold or italic text by doing the following:

1 Right-click the note text.

2 From the resulting shortcut menu, select Text Format.

3 From the resulting submenu, select Bold or Italic (default).

TeX Instructions
In the preceding procedure, note a third selection of the Text Format
submenu called TeX Instructions. This selection sets the text Interpreter
property to Tex, which allows you to use a subset of TeX commands embedded
in the string to produce special characters such as Greek letters and
mathematical symbols.

The TeX Instructions selection is used in the following example:

1 Right-click the text of an example note.

2 In the resulting shortcut menu, select Text Format.

3 In the submenu that results, make sure that TeX Instructions has a
check mark positioned in front of it. Otherwise, select it.

4 Click the note text to place the cursor in it.

5 Replace the existing note text with the following expression.

\it{\omega_N = e^{(-2\pii)/N}}

6 Click outside the note.

The note now has the following appearance:

6-49

6 Extending Stateflow Chart Diagrams

Moving Notes
To move your notes,

1 Place the cursor over the text of the note.

2 Click and drag the note to a new location.

3 Release the left mouse button.

Deleting Notes
To delete your notes, do the following:

1 Place the mouse cursor over the text of the note.

2 Click and hold the left mouse button on the note.

A dim rectangle appears surrounding the note.

3 Select the Delete key.

Alternatively, you can also do the following:

1 Place the mouse cursor over the text of the note.

2 Right-click the note.

3 From the resulting shortcut menu, select Cut.

6-50

Reporting Chart Diagrams

Reporting Chart Diagrams
Stateflow generates reports on all or part of your Stateflow chart:

• “Printing and Reporting on Stateflow Charts” on page 6-51

• “Generating a Model Report in Stateflow” on page 6-53

• “Printing the Current Stateflow Diagram” on page 6-56

• “Printing a Stateflow Book” on page 6-56

You can also use the Report Generator for MATLAB and Simulink to
generate a report that documents an entire Stateflow model, including both
Simulink and Stateflow components. See the MATLAB Report Generator
documentation.

Printing and Reporting on Stateflow Charts
The Print option prints a copy of the current Stateflow diagram loaded in the
Stateflow diagram editor. You can also select to print subcharts of the current
diagram or the chart, subcharts, and Simulink subsystems that contain the
current diagram.

Print a copy of a Stateflow diagram by doing the following:

1 Open the Stateflow chart or subchart you want to print.

2 Select Print from the File menu.

The Print Model dialog box appears as follows:

6-51

6 Extending Stateflow Chart Diagrams

In the resulting Print Model window, select the printer for this report and
one of the following options for the type of report you receive:

• Current system – Prints the current chart or subchart in view in the
Stateflow editor.

• Current system and above – Prints the current chart or subchart in view
in the Stateflow editor and all the subcharts and Simulink subsystems
that contain it.

• Current system and below – Prints the current chart or subchart in view
in the Stateflow editor and all the subcharts that it contains.

• All systems – Prints the current chart or subchart in view in the Stateflow
editor, all the subcharts that it contains, and all the subcharts and
Simulink subsystems that contain it.

Further enhance the above reports with the following options:

• Include Print Log — Includes a list of all printed diagrams as a preface
to the print report.

6-52

Reporting Chart Diagrams

• Look under mask dialog — Applies only to the masked subsystems that
might appear in Simulink subsystems that are printed with the report
options Current system and below and All systems.

• Expand unique library links — Applies only to the library blocks that
might appear in Simulink subsystems that are printed with the report
options Current system and below and All systems.

• Frame — Prints a title block frame that you specify in the adjacent field on
each diagram in the report.

Note This option is also available in the Simulink window. See the topic
“Printing a Block Diagram” in the Using Simulink documentation for more
information on the preceding options and on the behavior of this command
as used in Simulink. The information in this topic describes the behavior of
this option only when it is used in a Stateflow diagram editor window.

Generating a Model Report in Stateflow
The Print Details report in Stateflow is an extension to the Print Details
report in Simulink. It provides a report of Stateflow and Simulink model
objects relative to the Stateflow diagram currently in view in the Stateflow
diagram editor from which you select the report.

To generate a model report on Stateflow diagram objects, do the following:

1 Open the Stateflow chart or subchart whose objects you want to report on.

2 In the diagram editor window, select Print Details from the File menu.

The Print Details dialog box appears as follows:

6-53

6 Extending Stateflow Chart Diagrams

3 Make selections for the destination directory of the report file and reporting
options that determine what objects get reported.

For details on setting the fields in the File locations/naming options
section of this dialog, see “Generating a Model Report” in the Using
Simulink documentation. For details on the report you receive from the
report option you choose in the System reporting options section, see
“System Report Options” on page 6-54 and “Report Format” on page 6-55.

4 Select Print.

The Print Details dialog box appears and tracks the activity of the report
generator during report generation. See “Generating a Model Report” in the
Using Simulink documentation for more details on this window.

If no serious errors are encountered, the resulting HTML report is displayed
in your default browser.

System Report Options
Reports for the current Stateflow diagram vary with your choice of one of the
System reporting options fields as follows:

6-54

Reporting Chart Diagrams

• Current — Reports on the chart or subchart in the current Stateflow
diagram editor and its immediate parent Simulink system.

• Current and above — This option is grayed out and unavailable for
printing chart details in Stateflow.

• Current and below — Reports on the chart or subchart in the current
Stateflow diagram editor and all contents at lower levels of containment
(children) along with the immediate Simulink system.

• Entire model — Reports on the entire model including all Stateflow
charts in the model for the chart in the current Stateflow diagram editor
and all Simulink systems.

If this option is selected, the following options are enabled to modify this
report:

- Look under mask dialog – Include the contents of masked subsystems
in the report.

- Expand unique library links – Include the contents of library blocks
that are subsystems in the report.

The report includes a library subsystem only once even if it occurs in
more than one place in the model.

Report Format
The general top-down format of the Print Details report in Stateflow is as
follows:

• The report is titled with the system in Simulink containing the chart or
subchart in current view in Stateflow.

• A representation of Simulink hierarchy for the containing system and its
subsystems follows. Each subsystem in the hierarchy is linked to the report
of its Stateflow diagrams.

• The report section for the Stateflow diagrams of each system or subsystem
begins with a small report on the system or subsystem and is followed by a
report of each contained diagram.

• Each Stateflow diagram report includes a reproduction of its diagram with
links for subcharted states that have reports of their own.

6-55

6 Extending Stateflow Chart Diagrams

• Covered Stateflow and Simulink objects are tabulated and counted in a
concluding appendix to the report.

Printing the Current Stateflow Diagram
The Print Current View option prints an individual Stateflow chart or
subchart diagram as follows:

1 Open the chart or subchart that you want to print.

2 Select Print Current View from the Stateflow editor’s File menu.

3 In the resulting submenu, choose one of the following destination options:

• To File — Converts the current view to a graphics file.

Select the format of the graphics file from a resulting submenu of graphical
file types.

• To Clipboard — Copies the current view to the system clipboard.

Select the graphical format for the copy to the clipboard from a resulting
submenu of graphical formats.

• To Figure — Converts the current view to a MATLAB figure window.

• To Printer — Prints the current view on the current printer.

You can also print the current view from the MATLAB command line using
the sfprint function.

Printing a Stateflow Book
The Print Book report documents all the elements of a Stateflow chart,
including states, transitions, junctions, events, and data. You can generate a
book documenting a specific chart or all charts in a model.

To generate a book report of the objects of a Stateflow diagram, do the
following:

1 Select and open a chart or subchart that you want to document.

2 Select Print Book from the Stateflow editor’s File menu.

6-56

Reporting Chart Diagrams

The Print Book dialog box appears as follows:

3 Select the desired print options on the dialog.

4 Click the Print button to generate the report.

6-57

6 Extending Stateflow Chart Diagrams

6-58

7

Defining Events and Data

Stateflow uses events and data to manage the behavior of finite state machine
charts. Events control state transitions. Data objects store information that is
evaluated by conditions and actions. Together, events and data influence the
flow of control logic in the Stateflow design hierarchy.

The highest-level object in the hierarchy is the Stateflow machine. It contains
all other Stateflow objects in a Simulink model including Stateflow charts,
along with their states and substates. You can define events and data for all
Stateflow objects in the design hierarchy. Each event and data object comes
with its own set of configurable properties, based on where in the hierarchy
the object is defined.

The Stateflow data dictionary is the internal representation of the hierarchy
of all graphical and nongraphical Stateflow objects that reside in a Simulink
model. When you create graphical objects — such as states, transitions,
junctions, and graphical functions — in a Stateflow chart, they are added
automatically to the data dictionary. However, you must define nongraphical
objects explicitly. Events and data are nongraphical objects in the Stateflow
hierarchy. This chapter explains how to define events and data in the
Stateflow data dictionary.

Adding Events (p. 7-4) Learn how to define events for
triggering actions in Stateflow and
its environment.

Setting Event Properties in the
Event Dialog (p. 7-8)

A reference to the fields of the Event
dialog for setting the properties of an
event in Stateflow.

7 Defining Events and Data

Sharing Events with Simulink
(p. 7-13)

Shows you how to define the input
and output events for a Stateflow
chart that allow it to communicate
with other Simulink blocks.

Sharing Events with Stateflow
External Code (p. 7-21)

Shows you how to define events in
Stateflow that enable external code
to send events to other charts in the
model and receive events from other
charts in the model.

Defining Implicit Events (p. 7-24) Describes events that Stateflow
triggers implicitly for actions such
as entry in or exit from a state.

Adding Data (p. 7-27) Learn how to define the data that
Stateflow stores internally in its own
workspace.

Setting Data Properties in the Data
Dialog (p. 7-31)

A reference to the fields of the Data
dialog for setting the properties of a
data in Stateflow.

Sharing Stateflow Data with
Simulink and MATLAB (p. 7-46)

Learn different ways that you can
share data with Simulink and
MATLAB in a Stateflow chart.

Sharing Global Data with Simulink
(p. 7-53)

Learn how to access Simulink data
store memory from a Stateflow chart.

Sharing Data Between Charts and
with External Modules (p. 7-59)

Learn how to share data between
Stateflow charts and with external
modules.

Typing Stateflow Data (p. 7-63) Learn how to specify the type of your
Stateflow data.

Sizing Stateflow Data (p. 7-72) Learn different ways to specify the
size of your Stateflow data as a
vector or matrix.

Defining Temporary Data (p. 7-75) Describes how you can define
temporary data in graphical, truth
table, and Embedded MATLAB
functions

7-2

Guidelines for Inheriting Data and
Event Properties (p. 7-77)

Describes guidelines for inheriting
event and data properties in
Stateflow

Transferring Events and Data
Across Models (p. 7-78)

Explains how to copy Stateflow
events and data from one Simulink
model to another

7-3

7 Defining Events and Data

Adding Events
An event is a Stateflow object that triggers actions in a Stateflow machine or
its environment.

Stateflow uses a set of implicit events that typically fire whenever a Stateflow
machine wakes up (see “Defining Implicit Events” on page 7-24). You can also
define your own events in any of the following scopes:

• Local — Event is broadcast in the Stateflow chart.

• Input from Simulink — Event is broadcast by another Simulink block to
the Stateflow chart.

• Output to Simulink — Event is broadcast from the Stateflow chart to
another Simulink block.

This topic describes how to add events to a Stateflow chart.

• “Visibility of Events” on page 7-4

• “How to Add Events” on page 7-4

Visibility of Events
The visibility of events extends down through the Stateflow design hierarchy
as follows:

Event Defined In Visible To

Stateflow machine All Stateflow charts in the model, along with their
states and substates

Stateflow chart The chart, along with all of its states and substates

State To the state and all of its substates

How to Add Events
There are two ways to add events in Stateflow:

• Add events to a specific chart using the Stateflow Editor

7-4

Adding Events

• Add events at any level of Stateflow hierarchy using the Model Explorer.

Adding Events Using the Stateflow Editor
With the Stateflow Editor, you can add events to the open Stateflow chart.
Follow these steps:

1 From the Add menu of the Stateflow Editor, select Event.

2 In the resulting submenu, select the scope for the event:

• Local – Event is broadcast in the Stateflow chart.

• Input from Simulink – Event is broadcast by another Simulink block
to the Stateflow chart.

• Output to Simulink – Event is broadcast from the Stateflow chart
to another Simulink block.

Stateflow adds a default definition of the new event to the Stateflow data
dictionary and displays the Event properties dialog box.

3 Specify properties for the event in the Event properties dialog box, as
described in “Setting Event Properties in the Event Dialog” on page 7-8.

Adding Events Using the Model Explorer
With the Model Explorer, you can add events at the following levels in the
Stateflow hierarchy:

• Stateflow machine

• Stateflow chart

• Subchart

• State

• Substate

• Box

You select an object in the Stateflow hierarchy to be the parent of your event.
The following example shows the Stateflow objects that can parent events in
the sf_boiler model hierarchy in the Model Explorer:

7-5

7 Defining Events and Data

To add events using the Model Explorer, follow these steps:

1 Select Explore from the Stateflow Editor’s Tools menu.

Stateflow opens the Model Explorer. If no object is selected, the current
chart or subchart is highlighted in the Model Hierarchy pane of the
Model Explorer. Otherwise, the selected object is highlighted.

7-6

Adding Events

2 Select the object in the Stateflow hierarchy where you want the new event
to be visible.

The object you select becomes the parent of the event.

3 Select Event from the Add menu, or click the Add Event button:

Stateflow adds a default definition for the new event in the data dictionary
and displays an entry row for the new event in the Explorer’s Contents
pane, as in this example:

4 Change the properties of the event you add in one of the following ways:

• Right-click the event row and select Properties to open the Event
properties dialog.

See “Setting Event Properties in the Event Dialog” on page 7-8 for a
description of each property for an event.

• Click individual cells in the entry row to set specific properties such as
Name, Scope, and Port.

7-7

7 Defining Events and Data

Setting Event Properties in the Event Dialog
You can set properties for an event through its Event properties dialog. This
section shows you how to access the dialog and describes the property fields.

Event Properties Dialog
The Event properties dialog allows you to set and modify the properties of
events in Stateflow. Properties vary according to the scope of the event.
Therefore, the Event properties dialog is dynamic, displaying only the
property fields that are relevant for the event you are configuring. For
example, the dialog displays the following properties and default values for an
event whose scope is Local:

7-8

Setting Event Properties in the Event Dialog

For input and output events, the dialog displays these properties and defaults:

Accessing the Event Properties Dialog
To access the Event properties dialog, use one of these methods:

• Add a new event from the Stateflow Editor.

The Event properties dialog opens on your desktop, as described in “Adding
Events Using the Stateflow Editor” on page 7-5.

• Open the Event properties dialog in the Model Explorer using one of
these techniques:

- Double-click the event in the Contents pane.

- Right-click the event in the Contents pane and select Properties.

- Select the event in the Contents pane and then select Dialog View
from the View menu.

7-9

7 Defining Events and Data

The Event properties dialog opens inside the Model Explorer.

See “Adding Events Using the Model Explorer” on page 7-5.

Property Fields

Name
Name of the event. Actions reference events by their names. Names must
begin with an alphabetic character, cannot include spaces, and cannot be
shared by sibling events.

Parent
Parent of the event. The parent can be a Stateflow machine, chart, box, or
state. When an event is triggered, Stateflow broadcasts the event to its parent
and all the parent’s descendants. You specify the parent when you add the
event to the data dictionary (see “Adding Events” on page 7-4). This field is
read-only, but you can click the associated link to display the parent object in
the Stateflow Editor.

Note You can also change the parent by dragging the event from the
Contents pane of the Model Explorer to a different object in the Model
Hierarchy pane.

Scope
Scope of the event. The scope specifies where the event occurs relative to its
parent. You can choose from the following scopes:

Scope Description

Local Event that can occur anywhere in a Stateflow machine,
but is visible only in its parent object (and its parent’s
descendants).

Input from
Simulink

Event that occurs in a Simulink block, but is broadcast
in a Stateflow chart. See “Defining Input Events” on
page 7-13.

7-10

Setting Event Properties in the Event Dialog

Scope Description

Output to
Simulink

Event that occurs in a Stateflow chart, but is broadcast
in a Simulink block. See “Defining Output Events”
on page 7-14.

Exported Event that can be broadcast by external code built into
a standalone or Real-Time Workshop target. You can
define exported events only for a Stateflow machine.
See “Exporting Events to Stateflow External Code”
on page 7-21.

Imported Externally-defined event that can be broadcast
anywhere within the hierarchy of a Stateflow machine.
You can define imported events only for a Stateflow
machine. See “Importing Events from Stateflow
External Code” on page 7-22.

Port
This property applies to input and output events. For input events, port is the
index of the input signal that triggers the event. For output events, port is
the index of the port that outputs this event. By default, the port number is
assigned based on order of creation. For example, the first input event is
assigned to port 1 and the third output event is assigned to port 3. You can
change the default port numbers in the Model Explorer or Event properties
dialog. When you change the number of one port, the numbers of other ports
are adjusted automatically to preserve their relative order. See “Associating
Input Events with Control Signals” on page 7-14 and “Associating an Output
Event with an Output Port” on page 7-15.

Trigger
Type of signal that triggers an input or output event. See “Defining Input
Events” on page 7-13 or “Defining Output Events” on page 7-14.

Debugger Breakpoints
Option for setting debugger breakpoints at the start and/or end of an event
broadcast.

7-11

7 Defining Events and Data

Description
Description of this event. Stateflow allows you to enter brief descriptions of
events in the data dictionary.

Document Link
Link to online documentation for events defined by a Stateflow chart. To
document a particular event, set its Document Link property to a Web
URL address or MATLAB expression that displays documentation in a
suitable online format (for example, an HTML file or text in the MATLAB
command window). Stateflow evaluates the expression when you click the
blue Document Link text.

7-12

Sharing Events with Simulink

Sharing Events with Simulink
Before a Stateflow block can send events or receive them from other Simulink
blocks, you need to define them for the Stateflow chart. Use the following
topics to define input and output events:

• “Defining Input Events” on page 7-13 — Describes input events that
allow other Simulink blocks, including other Stateflow charts, to notify a
particular chart of events that occur outside it.

• “Associating Input Events with Control Signals” on page 7-14 — Tells you
how to associate multiple control signals with a single trigger port for the
Stateflow block.

• “Defining Output Events” on page 7-14 — Describes output events that
allow a chart to notify other blocks in a model of occurrences in that chart.

• “Associating an Output Event with an Output Port” on page 7-15 — Tells
you how to position the output ports for multiple output events.

• “Accessing Simulink Subsystems from Stateflow Events” on page 7-16 —
Explains how to access the Simulink subsystem associated with an event
directly from the Stateflow Editor.

• Setting Event Triggers — Explains how to trigger a Stateflow block via a
change in control signal or a Simulink block that outputs function-call
events.

Defining Input Events
An input event occurs outside a chart and is visible only in that chart. This
type of event allows other Simulink blocks, including other Stateflow charts,
to notify a particular chart of events that occur outside it. To define an event
as an input event, set its Scope property to Input from Simulink.

The following steps describe how to add an input event to a chart in the
Model Explorer:

1 Add an event to the Stateflow chart.

You must add an input event to the chart and not to one of its objects.
See “Adding Events” on page 7-4 for a description of how to add events
to Stateflow charts.

7-13

7 Defining Events and Data

2 Set the Scope property for the event to Input from Simulink.

A single trigger port is added to the top of the Stateflow block.

3 If you want a Simulink block to trigger the Stateflow chart through this
input event, specify a trigger, as described in Setting Event Triggers.

Associating Input Events with Control Signals
When you define one or more input events for a chart, Stateflow adds a
single trigger port to the chart block. External Simulink blocks can trigger
the input events via a signal or vector of signals connected to the trigger
port. The Port property of an input event associates the event with a specific
element of a control signal vector that is connected to the trigger port (see
“Port” on page 7-11).

The number of the port assigned to the input event acts as an index into
the control signal vector. For example, the first element of the signal vector
triggers the input event assigned to port 1, the fourth element triggers the
input event assigned to port 4, and so on. By default, port numbers are
assigned to events in order of creation. However, you can change these
assignments by setting the event’s Port property to the index of the signal
that you want to trigger the event.

At any given time step, input events are checked in ascending order based
on their port numbers. The chart is awakened (triggered) once per valid
event. When events are edge-triggered, multiple edges can occur in the same
time-step, thereby waking the chart more than once in the same time-step. In
this situation, events occur (and wake the chart) in an ascending sequence
based on their port numbers.

In case of function-call input events, there is one trigger event only. The caller
of the function-call event explicitly calls and executes the chart. Only one
function-call can be valid in a single time step.

Defining Output Events
An output event is an event that occurs in Stateflow chart, but is visible in
Simulink blocks outside the chart. This type of event allows a chart to notify
other blocks in a model of events that occur in the chart. To define an event
as an output event, set its Scope property to Output to Simulink. You can

7-14

Sharing Events with Simulink

define multiple output events for a given chart. Stateflow creates a chart
output port for each output event that you define (see “Port” on page 7-11).
Your model can use the output ports to trigger the output events in other
Simulink blocks in the same model.

To define an output event, follow these steps:

1 Add an event to the Stateflow chart, as described in “Adding Events” on
page 7-4.

2 Set the Scope field to Output to Simulink.

For each output event you define, a Simulink output port is added to the
Stateflow block. Output events must be scalar.

3 If you want this chart to call a subsystem, do one of the following:

• To call an edge-triggered subsystem, set the Trigger property of the
output event to Either Edge.

See “Defining Edge-Triggered Output Events” on page 10-26 for an
example of a Stateflow block calling an edge-triggered subsystem in
Simulink.

• To call a function-call subsystem, set the Trigger property of the output
event to Function Call.

For an example of a Stateflow block calling a function-call subsystem,
see “Defining Function Call Output Events” on page 10-22.

Associating an Output Event with an Output Port
The Port property for an output event associates it with an output port on the
chart block that parents the event. It specifies the position of the output port
relative to other output event ports on the Chart block. Output event ports
appear below output data ports on the right side of a chart block.

Stateflow numbers all output ports sequentially from top to bottom; therefore,
output data ports are numbered before output events ports. As you add
output events, their default Port properties are assigned sequentially to the
end of the existing port list.

7-15

7 Defining Events and Data

You can change the default port assignment of an event by resetting its Port
property. When you change the Port property for an output event, the ports
for the remaining output events are automatically renumbered, preserving
original order. For example, assume that there are three output events,
OE1, OE2, and OE3, that are associated with the output ports 4, 5, and 6,
respectively. If you change the Port property for OE2 to 6, the ports for OE1
and OE3 are renumbered to 4 and 5, respectively.

Accessing Simulink Subsystems from Stateflow
Events

You can access the Simulink subsystem associated with a Stateflow event
directly from the Stateflow Editor. Follow these steps:

1 Right-click the state that contains the event of interest.

2 Select Explore.

The Explore menu lets you access all events defined in the selected state.

3 Select the desired event.

The Simulink subsystem associated with the event is displayed.

7-16

Sharing Events with Simulink

For example, you can use this procedure to access the Simulink subsystem
associated with the Stateflow shift_logic_chart in the sf_car model, as
shown:

7-17

7 Defining Events and Data

In this example, when you select the CALC_TH event, the Simulink subsystem
Threshold Calculation is displayed:

Setting Event Triggers

You can trigger a Stateflow block via a change in control signal
(edge-triggered event) or a Simulink block that outputs function-call events
(function-call-triggered event). You specify the trigger by selecting an option
in the Trigger field of the Event properties dialog.

Note You cannot mix function-call-triggered and edge-triggered input events
in a single Stateflow chart. If Stateflow detects this condition during parsing
or code generation, it generates an error.

This section describes the trigger options.

7-18

Sharing Events with Simulink

Using Control Signal Triggers

You can use edge triggers to trigger a Stateflow block when a control signal
changes. Use edge triggers when you can tolerate a delay from the time the
trigger occurs to the time of execution. An edge trigger causes a subsystem to
execute at the beginning of the next simulation time step, regardless of when
triggering actually occurred during the previous time step.

To trigger a Stateflow block via a change in control signal, set the Trigger
property in the Event properties dialog to one of the following edge triggers:

Edge Trigger Type Description

Rising Rising edge trigger, where the control signal changes
from either 0 or a negative value to a positive value.

Falling Falling edge trigger, where the control signal changes
from either 0 or a positive value to a negative value.

Either Either rising or falling edge trigger.

Function call A function-call subsystem in Simulink that triggers
an event in a Stateflow chart.

Note To use this type of trigger, you must have
already defined a programmed function-call
subsystem and a Stateflow block in the Simulink
model.

In all cases, the signal must cross 0 to constitute a valid edge trigger. For
example, a signal that changes from -1 to 1 is a valid rising edge, but signal
that changes from 1 to 2 is not a valid rising edge.

Using Function Call Triggers

You can use a function-call subsystem in Simulink to trigger an event in a
Stateflow chart. Before using this type of trigger, you must first create a
triggered subsystem in Simulink whose execution is determined by logic

7-19

7 Defining Events and Data

internal to an S-function instead of by the value of a signal (see “Function-Call
Subsystems” in the Simulink documentation).

Function-call triggers call function-call subsystems immediately, even if the
call is made in the middle of a time step.

To trigger the Stateflow block via a Simulink block that outputs function-call
events, set the Trigger property in the Event properties dialog to Function
call. Stateflow changes all other input events for the Stateflow chart to
Function call.

7-20

Sharing Events with Stateflow External Code

Sharing Events with Stateflow External Code
Stateflow allows external code defined for the Stateflow machine to send
exported events to trigger Stateflow charts in the model. It also allows
external code to receive imported events from other charts to trigger parts of
external code. The following topics explain how to export and import events
for external code in Stateflow.

• “Exporting Events to Stateflow External Code” on page 7-21 — Describes
how to export events that enable external code to trigger events in the
Stateflow machine.

• “Importing Events from Stateflow External Code” on page 7-22 — Describes
how to import events that allow a Stateflow machine built into a standalone
or Real-Time Workshop target to trigger an event in external code.

Exporting Events to Stateflow External Code
Stateflow machines can export events that trigger Stateflow charts in the
model. Exported events are children of the Stateflow machine; they cannot be
defined at any other level in the Stateflow design hierarchy.

To export an event, follow these steps:

1 Use the Model Explorer to add an event to the Stateflow machine, as
described in “Adding Events Using the Model Explorer” on page 7-5.

In the Model Hierarchy pane of the Model Explorer, the Stateflow machine
has the same name as the Simulink model. For example, consider the
model sf_car:

7-21

7 Defining Events and Data

In this model, the Stateflow machine is sf_car (highlighted) and not
shift_logic, which is the Stateflow chart.

2 Set the Scope property of the event to Exported, as described in “Setting
Event Properties in the Event Dialog” on page 7-8.

The Stateflow code generator generates a function for each exported event.
The C prototype for the exported event function takes the form

void external_broadcast_EVENT()

In this function, EVENT is the name of the exported event. External code
built into a target can trigger the event by invoking the event function.
For example, suppose you define an exported event named switch_on.
External code can trigger this event by invoking the generated function
external_broadcast_trigger_on. See “Exported Events” on page 10-31
for examples of how to trigger an exported event and of a Stateflow event
exported to Stateflow external code.

Importing Events from Stateflow External Code
A Stateflow machine serves as a surrogate parent for imported events defined
by external code. Importing an event allows Stateflow to build a custom

7-22

Sharing Events with Stateflow External Code

or Real-Time Workshop (RTW) target, that triggers the imported event in
external code.

To import an event, add an event to the Stateflow machine that needs to
trigger the event and set its Scope property to Imported.

Note You must use the Model Explorer to add imported events to the
Stateflow machine (see “Adding Events Using the Model Explorer” on page
7-5).

Stateflow assumes that external code defines each imported event as a
function of the form

void external_broadcast_EVENT

where EVENT is the Stateflow name of the imported event. For example,
suppose that the Stateflow machine imports an external event named
switch_on. In this case, Stateflow assumes that external code defines a
function named external_broadcast_switch_on that broadcasts the event
to external code. Later, when you build a target for the Stateflow machine,
the Stateflow code generator encodes actions that signal imported events
as calls to the corresponding external broadcast event functions defined by
the external code.

See “Imported Events” on page 10-33 for an example of a Stateflow external
code event imported into Stateflow.

7-23

7 Defining Events and Data

Defining Implicit Events
Stateflow recognizes the following built-in events that typically occur
whenever a chart executes:

• Chart waking up

• Entry into a state

• Exit from a state

• Value assigned to an internal data object

These events are called implicit events because you do not have to define or
trigger them explicitly. Implicit events are children of the chart in which they
occur and therefore are visible only in the parent chart.

This chapter covers the following topics:

• “Referencing Implicit Events” on page 7-24

• “Example of an Implicit Event” on page 7-25

Referencing Implicit Events
Action expressions use the following syntax to reference implicit events:

event(object)

where event is the name of the implicit event and object is the state or data
in which the event occurred.

Each of the following keywords generates implicit events in the action
language notation for states and transitions.

Implicit Event Meaning

change(data_name)
or chg(data_name)

Specifies and implicitly generates a local event
when the value of data_name changes.

enter (state_name)
en(state_name)

Specifies and implicitly generates a local event
when the specified state_name is entered.

7-24

Defining Implicit Events

Implicit Event Meaning

exit (state_name)
ex(state_name)

Specifies and implicitly generates a local event
when the specified state_name is exited.

tick Same as wakeup keyword.

wakeup Specifies and implicitly generates a local event when
the chart of the action being evaluated awakens.

If more than one object has the same name, the event reference must qualify
the object’s name with that of its ancestor. Here are some examples of valid
references to implicit events.

enter(switch_on)
en(switch_on)
change(engine.rpm)

Note The wakeup (or tick) event always refers to the chart containing the
action being evaluated. It cannot reference a different chart by argument.

Example of an Implicit Event
This example illustrates use of an implicit enter event.

7-25

7 Defining Events and Data

Fan and Heater are parallel (AND) superstates. By default, the first time the
Stateflow chart is awakened by an event, the states Fan.Off and Heater.Off
become active. The first time event Fan_switch occurs, the transition from
Fan.Off to Fan.On occurs. When the entry action of Fan.On executes, an
implicit local event is broadcast (i.e., en(Fan.On) == 1). This event broadcast
triggers the transition from Heater.Off to Heater.On (triggered by the
condition en(Fan.On). Similarly, when the system transitions from Fan.On to
Fan.Off and the implicit local event Fan.Off is broadcast, the transition from
Heater.On to Heater.Off is triggered.

7-26

Adding Data

Adding Data
Stateflow can store and retrieve data that resides internally in its own
workspace, and externally in the Simulink model or application that embeds
the Stateflow chart. Stateflow actions can reference internal and external
data.

This section describes how to add data to the Stateflow data dictionary. There
are two methods:

• Add data to a specific chart using the Stateflow Editor.

• Add data at any level of Stateflow hierarchy using the Model Explorer.

Adding Data Using the Stateflow Editor
With the Stateflow Editor, you can add data to the open Stateflow chart. The
data is visible to all objects in the chart. Follow these steps:

1 From the Add menu of the Stateflow Editor, select Data.

2 In the pop-up menu, select a scope for the new data object.

See “Scope” on page 7-10 for a description of each type of scope.

Stateflow adds a default definition of the new data object to the Stateflow
data dictionary and displays the Data properties dialog.

3 Specify properties for the new data object in the Data properties dialog, as
described in “Setting Data Properties in the Data Dialog” on page 7-31 .

Adding Data Using the Model Explorer
With the Model Explorer, you can add data at all levels in the Stateflow
hierarchy, including the Stateflow machine, Stateflow chart, and individual
states in the chart. The data is visible to the parent object and its children.

With the Model Explorer, you can add data at the following levels in the
Stateflow hierarchy:

• Stateflow machine

7-27

7 Defining Events and Data

• Stateflow chart

• Subchart

• State

• Substate

• Box

• Function

Stateflow charts can contain graphical, truth table, and Embedded
MATLAB functions.

You select an object in the Stateflow hierarchy to be the parent of your data
object. The data will be visible to the parent object and its children. The
following example shows the Stateflow objects that can parent data objects
in the sf_boiler model hierarchy in the Model Hierarchy pane of the
Model Explorer:

7-28

Adding Data

To add data using the Model Explorer, follow these steps:

1 Select Explore from the Tools menu in the Stateflow Editor.

The Model Explorer opens.

7-29

7 Defining Events and Data

If no object is selected, the current chart or subchart is highlighted in the
Model Hierarchy pane of the Model Explorer. Otherwise, the selected
object is highlighted.

2 In the Model Hierarchy pane, select the object in the Stateflow hierarchy
where you want the new data to be visible.

The object you select becomes the parent of the data object.

3 Select Data from the Add menu, or click the Add Data button:

Stateflow adds a default definition for the data in the data dictionary and
displays the data definition in a new row in the Model Explorer Contents
pane, as in this example:

4 Change the properties of the data, as described in “Setting Data Properties
in the Data Dialog” on page 7-31.

7-30

Setting Data Properties in the Data Dialog

Setting Data Properties in the Data Dialog
You set properties for a data object through its Data properties dialog. For
many properties, you can enter expressions or parameters values. Using
parameters to set properties for large numbers of data objects simplifies
maintenance of your model because it allows you to update multiple properties
by changing a single parameter.

This section covers the following topics:

• “The Data Properties Dialog” on page 7-31

• “Setting General Properties” on page 7-33

• “Setting Value Attributes Properties” on page 7-39

• “Setting Description Properties” on page 7-42

• “Entering Expressions and Parameters for Data Properties” on page 7-42

The Data Properties Dialog
The Data properties dialog allows you to set and modify the properties of data
objects in Stateflow. Properties vary according to the scope and type of the
data object. Therefore, the Data properties dialog is dynamic, displaying only
the property fields that are relevant for the data object you are defining. For
example, the dialog displays the following properties and default values for a
data object whose scope is Constant and type is Fixed point:

7-31

7 Defining Events and Data

Opening the Data Properties Dialog
To open the Data properties dialog, use one of these methods:

• Add a new data item from the Stateflow Editor, as described in “Adding
Data Using the Stateflow Editor” on page 7-27.

After you add the data item, the Data properties dialog opens on your
desktop.

• Open the Data properties dialog from the Model Explorer for a data object
that you have already added to Stateflow. Use one of these techniques:

- Double-click the data object in the Contents pane.

- Right-click the data object in the Contents pane and select Properties.

- Select the data object in the Contents pane and then select Dialog
View from the View menu.

The Data properties dialog opens inside the Model Explorer.

For more information about adding data objects from the Model Explorer,
see “Adding Data Using the Model Explorer” on page 7-27.

Data Properties Dialog Panes
The Data properties dialog provides a set of dynamic tabbed panes, as in
this example:

7-32

Setting Data Properties in the Data Dialog

Each pane lets you define different features of your data object:

• The General pane lets you define the scope, size, and type of the data
object. See “Setting General Properties” on page 7-33

• The Value Attributes pane lets you set an initial value, limit range, and
index into the data object array. See “Setting Value Attributes Properties”
on page 7-39.

• The Description pane lets you enter a data description and link to
documentation about the data object. See “Setting Description Properties”
on page 7-42

Setting General Properties
The General tab of the Data properties dialog looks like this:

This section describes the fields in the General tab.

Name
Name of the data object. The name can be of any length and consist of any
combination of alphanumeric and special characters. The only restrictions are
that the name cannot begin with a numeric character or contain embedded
spaces.

7-33

7 Defining Events and Data

Parent
Parent of the data object. Only the parent and its children can access the
data object. This field is read-only, but you can click the link to display the
parent object in the Stateflow Editor.

Scope
Where data resides in memory, relative to its parent. You can set scope to
one of the following values:

Scope Value Description

Local Data defined in the current Stateflow chart only

Constant Read-only constant value that is visible to the parent
Stateflow object and its children.

Parameter Constant whose value is defined in the MATLAB
workspace, or derived from a Simulink parameter
that is defined and initialized in the parent masked
subsystem. The Stateflow data object must have the
same name as the parameter.

See “Mask Editor” in Simulink documentation for
information on how to assign a parameter to a masked
subsystem.

See “Bringing Simulink Parameters into Stateflow”
on page 7-49 to learn how to use Simulink parameters
with Stateflow blocks.

Input If the parent is a graphical, truth table, or Embedded
MATLAB function, the data is an input argument to
the function. Otherwise, the data is provided by the
Simulink model to the Stateflow chart via an input
port to the Stateflow block. See “Sharing Input and
Output Data with Simulink” on page 7-46.

7-34

Setting Data Properties in the Data Dialog

Scope Value Description

Output If the parent is a graphical, truth table, or Embedded
MATLAB function, the data is a value returned by
the function. Otherwise, the data is provided by the
Stateflow chart to the Simulink model via an output
port on the Stateflow block. See “Sharing Input and
Output Data with Simulink” on page 7-46.

Data Store Memory Data object that binds to a Simulink data store,
which is a signal that functions like a global variable
because it can be accessed by all blocks in a model.
The binding allows the Stateflow chart to read and
write the Simulink data store, thereby sharing global
data with the model. The Stateflow object must
have the same name as the Simulink data store. See
“Sharing Global Data with Simulink” on page 7-53.

Temporary Data that persists only during the execution of a
function. Temporary data can be defined only for
a graphical, truth table, or Embedded MATLAB
functions, as described in Defining Temporary Data.

Exported Data from the Simulink model that is made available
to external code defined in Stateflow, as described in
“Sharing Stateflow Data with External Modules” on
page 7-60 . Exported data can be defined only for a
Stateflow machine.

Imported Data parented by the Simulink model that is defined
by external code embedded in the Stateflow machine,
as described in “Sharing Stateflow Data with External
Modules” on page 7-60 . Imported data can be defined
only for a Stateflow machine.

Port
Index of the port associated with the data object. This property applies only to
input and output data. See “Sharing Input and Output Data with Simulink”
on page 7-46

7-35

7 Defining Events and Data

Size
Size of the data object. The size can be a scalar value or a MATLAB vector
of values. Scalars are specified by setting the Size property to 1 or leaving
it blank. MATLAB vectors are specified as multidimensional arrays, where
the number of dimensions equals the length of the vector, and the size of each
dimension corresponds to the value of each element of the vector.

The scope of the data object determines what sizes you can specify. Stateflow
data store memory inherits all of its properties — including size — from
the Simulink data store to which it is bound. For other scopes, follow these
guidelines:

Scope Scalar Vector
Matrix
2-dimensions

Matrix
n-dimensions

Constant Yes

Input from
Simulink/Output
to Simulink

Yes Yes Yes

Local/Temporary Yes Yes Yes Yes

Imported/Exported Yes Yes Yes Yes

Graphical
Function
Input/Output

Yes Yes Yes

Truth Table
Function
Input/Output

Yes Yes Yes

Embedded
MATLAB
Function
Input/Output

Yes

Parameter Yes Yes Yes

For more information, see “Sizing Stateflow Data” on page 7-72.

7-36

Setting Data Properties in the Data Dialog

Data Type Mode and Data Type
Type of the data object. Based on the mode you select, you can specify the
data type by

• Selecting from built-in types, including fixed point

• Entering an expression that evaluates to a data type

• Inheriting the type from previously-defined data in Simulink or the
MATLAB workspace

See “Typing Stateflow Data” on page 7-63.

Fixed-Point Data Properties
When you select the data type mode Fixed point, the Data properties
dialog displays new fields for specifying additional information about your
fixed-point data, as shown in the Type panel:

For a detailed discussion about fixed-point data, see “Fixed-Point Concepts”
in the online Fixed-Point Toolbox documentation.

7-37

7 Defining Events and Data

You can set the following fixed-point properties:

Signed. Use this check box to indicate whether you want the fixed-point data
to be signed or unsigned. Signed data can represent positive and negative
quantities. Unsigned data represents positive values only.

Word length. Specify the size in bits of the word that will hold the quantized
integer. Large word sizes represent large quantities with greater precision
than small word sizes. Word length can be any integer between 0 and 32. If
you do not specify a value, the default is 16.

Scaling mode. Specify the method for scaling your fixed point data to avoid
overflow conditions and minimize quantization errors. Scaling is disabled by
default. However, you can select two scaling modes:

Scaling
Mode

Description

Binary
point

If you select this mode, the Data properties dialog displays a
field for entering fraction length that specifies the binary point
location. Binary points can be positive or negative integers. If
you do not specify a value, the default is 0. A positive integer
entry moves the binary point left of the rightmost bit by that
amount. For example, an entry of 2 sets the binary point in
front of the second bit from the right. A negative integer entry
moves the binary point further right of the rightmost bit by
that amount.

Slope and
bias

If you select this mode, the Data properties dialog displays
fields for entering separate values for the slope and bias. Slope
can be any positive real number. If you do not specify a value,
the default is 1.0. Bias can be any real number. If you do not
specify a value, the default value is 0.0. You can enter slope
and bias as expressions that contain parameters defined in
the MATLAB workspace.

7-38

Setting Data Properties in the Data Dialog

Lock output scaling against changes by the autoscaling tool. Use this
check box to indicate whether you want to prevent Simulink from replacing
the current fixed-point type with a type chosen by the autoscaling tool. See
“Automatic Scaling” in Simulink Fixed Point documentation for instructions
on autoscaling fixed-point data in Simulink.

Setting Value Attributes Properties
The Value Attributes tab of the Data properties dialog looks like this:

This section describes the fields in the Value Attributes tab.

Initial value
Initial value of the data object. If you do not specify a value, the default is 0.0.
The options for initializing values depend on the scope of the data object, as
follows:

Scope What to Specify for Initial Value

Local Expression or parameter defined in Stateflow data
dictionary, MATLAB workspace, or Simulink masked
subsystem

Constant Constant value or expression. The expression will
be evaluated when you update the diagram and the
resulting value will be used as a constant for running
the Stateflow chart.

7-39

7 Defining Events and Data

Scope What to Specify for Initial Value

Parameter You cannot enter a value. The initial value is inherited
from the parameter.

Input You cannot enter a value. The initial value is inherited
from the Simulink input signal on the designated port.

Output Expression or parameter defined in Stateflow data
dictionary, MATLAB workspace, or Simulink masked
subsystem

Data Store
Memory

You cannot enter a value. The initial value is inherited
from the Simulink data store to which it is bound.

For more information, see “Initializing Data from the MATLAB Base
Workspace” on page 7-50 and “Bringing Simulink Parameters into Stateflow”
on page 7-49.

Save final value to base workspace
If you select this option, Stateflow assigns the value of the data item to
a variable of the same name in the model’s base workspace at the end of
simulation (see “Working with Model Workspaces”)

Limit range properties
The range of acceptable values for this data object. Stateflow uses this range
to validate the data object during simulation. To establish the range, specify
these properties:

• Maximum — The largest value allowed for the data item during
simulation. You can enter an expression or parameter that evaluates to a
numeric scalar value.

• Minimum — The smallest value allowed for the data item during
simulation. You can enter an expression or parameter that evaluates to a
numeric scalar value.

If you do not specify a value, the default for Maximum is inf and the default
for Minimum is -inf.

7-40

Setting Data Properties in the Data Dialog

For more information, see “Entering Expressions and Parameters for Data
Properties” on page 7-42.

First index
Specifies the index of the first element of the data array. If you do not specify
a value, the default is 0.

Units
A description field. You can enter the units of measurement that you want to
associate with the data object. The value of this field is stored with the data
object in the Stateflow data dictionary.

Test point
When enabled, this option designates the data object as a test point, which
guarantees that it will be observable during simulation (see “Working with
Test Points” in Simulink documentation). Data objects can be test points if

• Scope is Local

• Parent is not a Stateflow machine

• Data type is not ml

Watch in debugger
When enabled, the Stateflow debugger watches for changes in the data object.
When it detects that the data has been modified, the debugger pauses and
displays the data in its output display pane (see “Watching Data in the
Stateflow Debugger” on page 15-26).

7-41

7 Defining Events and Data

Setting Description Properties
The Description tab of the Data properties dialog looks like this:

This section describes the fields in the Description tab.

Description
Description of the data object.

Document link
Link to online documentation for the data object. You can enter a Web URL
address or a MATLAB command that displays documentation in a suitable
online format, such as an HTML file or text in the MATLAB command
window. When you click the blue text that reads Document link displayed at
the bottom of the Data properties dialog, Stateflow evaluates the link and
displays the documentation.

Entering Expressions and Parameters for Data
Properties
You can enter expressions as values for the following properties in the
Stateflow Data properties dialog:

7-42

Setting Data Properties in the Data Dialog

• “Size” on page 7-36

• Data Type Mode and Data Type

• “Initial value” on page 7-39

• Minimum and Maximum (see “Limit range properties” on page 7-40)

• “Fixed-Point Data Properties” on page 7-37

Expressions can contain a mix of parameters, constants, arithmetic operators,
and calls to MATLAB functions.

Default Data Property Values

When you leave an expression or parameter field blank, Stateflow assumes
a default value, as follows:

Field Default

Initial value 0.0

Maximum inf

Minimum –inf

Word Length 16

Slope 1.0

Bias 0.0

Binary point 0

First index 0

Size • −1 (inherited), for inputs, parameters, and Embedded
MATLAB Function outputs

• scalar, for all other data objects

Using Parameters in Expressions
The Data properties dialog allows you to include parameters in expressions.
A parameter is a constant whose value can be

7-43

7 Defining Events and Data

• Defined in the MATLAB workspace (see “Initializing Data from the
MATLAB Base Workspace” on page 7-50)

• Derived from a Simulink parameter that is defined and initialized in
the parent masked subsystem (see “Bringing Simulink Parameters into
Stateflow” on page 7-49)

You can mix both types of parameters in an expression.

Using Constants in Expressions
You can use two types of constants in expressions in the Data properties
dialog:

• Numeric constants of the appropriate type and size.

• Stateflow constants

Stateflow constants are read-only Stateflow data objects that you add to
your chart with the scope Constant (see “Adding Data” on page 7-27).
Stateflow constants retain their initial values, which you set in the Data
properties dialog (see “Initial value” on page 7-39).

Using Arithmetic Operators in Expressions
You can use the following arithmetic operators in expressions in the Data
properties dialog:

• +

• –

• *

• /

Calling Functions in Expressions
In fields that accept expressions, you can call functions that return property
values of other variables defined in the Stateflow Data Dictionary, MATLAB
workspace, or Simulink masked subsystem. For example, the following
functions may return appropriate values for specified fields in the Stateflow
Data property dialog:

7-44

Setting Data Properties in the Data Dialog

Function Returns For Field

MATLAB size
function

Size of input array Size

Stateflow type
function

Type of input data Data type

MATLAB min
function

Smallest element or
elements of input
array

Minimum

MATLAB max
function

Largest element or
elements of input
array

Maximum

Simulink
fixdt function

Simulink.NumericType
object that describes
a fixed-point or
floating-point data
type

Data type

7-45

7 Defining Events and Data

Sharing Stateflow Data with Simulink and MATLAB
Stateflow charts can receive input data from a Simulink input signal or a
Simulink parameter defined for a masked subsystem. Stateflow charts can
also send output data through a Simulink output signal. The following topics
explain how Stateflow shares data with Simulink:

• “Sharing Input and Output Data with Simulink” on page 7-46

• “Resolving Signal Objects for Output Data” on page 7-48

• “Bringing Simulink Parameters into Stateflow” on page 7-49

• “Initializing Data from the MATLAB Base Workspace” on page 7-50

• “Saving Data to the MATLAB Workspace” on page 7-51

Sharing Input and Output Data with Simulink
Data flows between Simulink and Stateflow via input ports and output ports
on the Stateflow chart block. The following example shows a Stateflow chart
block with input and output data ports connected to the Simulink model.

To add input or output data to a Stateflow chart, follow these steps:

7-46

Sharing Stateflow Data with Simulink and MATLAB

1 Add a data object to the Stateflow chart, as described in “Adding Data
Using the Stateflow Editor” on page 7-27.

Note The data must be added to the Stateflow chart, not to any other
object in the chart.

2 Open the Data properties dialog, as described in “Opening the Data
Properties Dialog” on page 7-32.

3 Set the Scope property to one of the following values:

• Input

This setting is the same as Input from Simulink from the Add > Data
menu in the Stateflow Editor. A Simulink input port is added to the
Stateflow chart block in the model.

• Output

This setting is the same as Output to Simulink from the Add > Data
menu in the Stateflow Editor. A Simulink output port is added to the
Stateflow chart block in the model.

By default, Stateflow assigns inputs and outputs to ports in the order in
which you add the data. For example, Stateflow assigns the first input
to input port 1, the third output to output port 3. You can alter port
assignments by editing the value displayed in the Port field of the Data
properties dialog.

4 Set the type of the input or output data, as described in “Typing Stateflow
Data” on page 7-63.

5 Consider whether you want to use strong data typing with Simulink, as
described in “Strong Data Typing with Simulink I/O” on page 7-70.

6 Set the size of the input or output data, as described in “Sizing Stateflow
Data” on page 7-72.

7-47

7 Defining Events and Data

Note You cannot type or size Stateflow input data to accept frame-based
data from Simulink.

Resolving Signal Objects for Output Data
Stateflow blocks participate in signal resolution with Simulink signal objects.
By default, Stateflow output data objects become associated with Simulink
signal objects of the same name during a process called implicit signal
resolution. See Simulink documentation for a more detailed explanation of
implicit signal resolution.

By default, implicit signal resolution generates a warning when the Simulink
chart is updated. However, you can manage implicit signal resolution at
various levels of the model hierarchy, as described in the following topics:

• “Eliminating Warnings for Implicit Signal Resolution for the Model” on
page 7-48

• “Disabling Implicit Signal Resolution for a Stateflow Chart” on page 7-49

• “Enabling Explicit Signal Resolution for an Individual Output Data Signal”
on page 7-49

Eliminating Warnings for Implicit Signal Resolution for the
Model
If you want to enable implicit signal resolution for all model signals, including
Stateflow output data, but eliminate the attendant warnings, do the following:

1 In Simulink, select Configuration Parameters from the Simulation
menu.

The Configuration Parameters dialog appears.

2 In the left pane of the dialog, under the Diagnostics node, select the Data
Validity node.

The Data Validity configuration parameters appear in the right pane
of the Configuration Parameters dialog. By default, the Signal
resolution field is set to Explicit only.

7-48

Sharing Stateflow Data with Simulink and MATLAB

3 Set the Signal resolution field to Explicit and implicit.

Disabling Implicit Signal Resolution for a Stateflow Chart
If you enable implicit signal resolution for the model but want to eliminate it
for an individual Stateflow chart, follow these steps:

1 Right-click the Stateflow block with output data that you do not want
resolved.

2 From the resulting context menu select Subsystem Parameters.

3 In the resulting Block Parameters dialog, for the Permit hierarchical
resolution field, select ExplicitOnly or None.

Enabling Explicit Signal Resolution for an Individual Output
Data Signal
If you want to force signal resolution for an individual output signal for a
Stateflow chart, follow these steps:

1 In Simulink, right-click the signal line connected to output data that you
want to resolve.

2 From the resulting pop-up menu select Signal Properties.

The Signal Properties dialog appears.

3 In the Signal Properties dialog, enter a name for the signal corresponding
to its signal object.

4 Select the Signal name must resolve to Simulink signal object check
box.

5 Click OK to save and apply your settings, and close the Signal Properties
dialog

Bringing Simulink Parameters into Stateflow
You might want to use Simulink parameters for a parent masked subsystem
in Stateflow. To bring these parameters into Stateflow, follow these steps:

7-49

7 Defining Events and Data

1 In the Simulink mask editor for the parent subsystem, define and initialize
a Simulink parameter (see “Mask Editor” in the Simulink documentation).

2 In Stateflow, define a data object with the same name as the parameter
(see “Adding Data” on page 7-27).

3 Set the scope of the data object to Parameter.

Data of scope Parameter is defined as a constant in the Stateflow chart
workspace. It cannot be changed during application execution. This scope
is primarily designed for Stateflow developers who want to use Simulink
parameters with Stateflow blocks and maintain consistency with the
Simulink model.

When simulation starts, Simulink attempts to resolve the Stateflow data
object to a parameter at the lowest level masked subsystem. If unsuccessful,
Simulink moves up the model hierarchy to resolve the data object to a
parameter at higher level masked subsystems.

Initializing Data from the MATLAB Base Workspace
Stateflow lets you initialize data from the MATLAB base workspace.
Initializing data from the MATLAB base workspace requires that you define
data in both the MATLAB base workspace and Stateflow as follows:

1 Define and initialize a variable in the MATLAB workspace.

2 In Stateflow, define a data object with the same name as the MATLAB
variable (see “Adding Data” on page 7-27).

3 Set the scope of the Stateflow data object to Parameter.

When simulation starts, the data is resolved. During this process, the
Stateflow data object gets its initial value from the associated MATLAB
variable. For example, if the variable is an array, each element of the
Stateflow array is initialized to the same value as the corresponding element
of the MATLAB array.

Note that one-dimensional arrays in Stateflow are compatible with MATLAB
row and column vectors of the same size. For example, a Stateflow vector

7-50

Sharing Stateflow Data with Simulink and MATLAB

of size 5 is compatible with a MATLAB row vector of size [1,5] or column
vector of size [5,1].

Time of Initialization
The following table summarizes the time of initialization for Stateflow data
objects, based on their parent and scope.

Data Parent Scope When Initialized

Local,
Exported

Start of simulationMachine

Imported Not applicable

Input Not applicableChart

Output,
Local

Start of simulation or
when chart is reinitialized
as part of an enabled
Simulink subsystem

State with History Junction Local Start of simulation or
when chart is reinitialized
as part of an enabled
Simulink subsystem

State without History Junction Local State activation (state
entered)

Input,
Output

When function is invokedFunction (graphical, truth
table, and embedded MATLAB)

Local Start of simulation or
when chart is reinitialized
as part of an enabled
Simulink subsystem

Saving Data to the MATLAB Workspace
For all scopes except Constant and Parameter, you can instruct Stateflow to
save the final value of a data object at the end of simulation in the MATLAB
base workspace (not as a masked subsystem parameter). Use one of these
techniques:

7-51

7 Defining Events and Data

• In the Value Attributes panel of the Data properties dialog, select the
check box Save final value to base workspace.

• In the Contents pane of the Model Explorer, follow these steps:

- Select the row of the data object.

- Select the check box in the SaveToWorkspace field.

7-52

Sharing Global Data with Simulink

Sharing Global Data with Simulink
Stateflow provides an interface that allows Stateflow charts to access global
variables in Simulink models. Simulink implements global variables as
data stores, created either as data store memory blocks or as instances of
Simulink.Signal objects. Using these constructs, multiple Simulink blocks
can share data without the need for explicit I/O connections to pass data
from one block to another. Stateflow charts share global data with Simulink
by reading and writing data store memory symbolically using the Stateflow
action language.

• “Stateflow Works with Local and Global Data Stores” on page 7-53

• “Accessing Data Store Memory from a Stateflow Chart” on page 7-54

• “Diagnostics for Sharing Data Between Stateflow and Simulink” on page
7-57

• “Best Practices for Using Data Stores in Stateflow” on page 7-58

Stateflow Works with Local and Global Data Stores
Stateflow charts can interface with local and global data stores. Local data
stores, often implemented as data store memory blocks, are visible to all
blocks in one model. To interact with local data stores, a Stateflow chart must
reside in the model where the local data store is defined, as in this example:

Global data stores have a broader scope, which crosses model reference
boundaries. To interact with global data stores, a Stateflow chart must reside
either in the top model — where the global data store is defined — or in any

7-53

7 Defining Events and Data

model referenced by the top model. Global data stores are implemented as
signal objects.

Accessing Data Store Memory from a Stateflow Chart
To access global data in Simulink from a Stateflow chart, you must bind a
Stateflow data object to a Simulink data store — either a data store memory
block or a signal object (see “Binding a Stateflow Data Object to Data Store
Memory” on page 7-54). After you create the binding, the Stateflow data
object becomes a symbolic representation of Simulink data store memory.
You can then use this symbolic object to store and retrieve global data
using the Stateflow action language (see “Reading and Writing Global Data
Programmatically” on page 7-56).

Binding a Stateflow Data Object to Data Store Memory
To bind a Stateflow data object to Simulink data store memory, you must
create a data object in Stateflow with the same name as the data store and
with scope set to Data Store Memory. The Stateflow data object then inherits
all properties from the data store to which it is bound. Follow guidelines
for specifying data store properties in “Best Practices for Using Data Stores
in Stateflow” on page 7-58.

You can bind a Stateflow data object to a data store from the Stateflow Editor
or Model Explorer. From the Stateflow Editor, follow these steps:

1 From the Add menu, select Data > Data Store Memory.

The properties dialog for the new data object appears with scope property
set to Data Store Memory automatically.

2 In the Name field, enter the name of the Simulink data store that you
want to bind to.

3 Click OK.

To use the Model Explorer, follow these steps:

1 Select Explore from the Tools menu in the Stateflow Editor.

2 In Model Explorer, select Data from the Add menu.

7-54

Sharing Global Data with Simulink

The Model Explorer adds a data object to the Stateflow chart.

3 Double-click the new data object to open its properties dialog, and enter
the following information in the General panel:

Field What to Specify

Name Enter the name of the Simulink data store memory block you
want to bind to.

Scope Select Data Store Memory from the drop-down menu.

4 Click OK.

Here is an example of a properties dialog for a Stateflow data object that is
bound to a data store:

Note that you cannot edit properties that are inherited from the data store.

7-55

7 Defining Events and Data

Resolving Data Store Bindings
Multiple local and global data stores with the same name can exist in the
same model hierarchy. In this situation, the Stateflow data object binds to the
data store that is the nearest ancestor.

Reading and Writing Global Data Programmatically
The Stateflow data object that you bind to Simulink data store memory can
be used to store and retrieve global data in states and transitions using the
Stateflow action language. Think of this object as a global variable that you
reference by its symbolic name — the same name as the data store to which it
is bound. When you store numeric values in this variable, you are writing to
Simulink data store memory. Similarly, when you retrieve numeric values
from this variable, you are reading from the data store memory.

Here is an example of Stateflow action language code that reads from and
writes to a data store memory block called myglobal:

7-56

Sharing Global Data with Simulink

Diagnostics for Sharing Data Between Stateflow and
Simulink
The ability to share data between unconnected blocks in Simulink and
Stateflow opens the possibility for multiple reads and writes to occur
unintentionally in the same time step. To detect these situations, you can
configure data store memory blocks to generate errors or warnings for the
following conditions:

• Read before write

• Write after write

• Write after read

Note These diagnostics are available only for data store memory blocks, not
for data stores created from signal objects.

When to Enable Diagnostics
Enable diagnostics on data store memory blocks to ensure the validity of
global data that is shared by multiple unconnected blocks running at different
rates. In this scenario, you can detect conditions when writes do not occur
before reads in the same time step. To circumvent these violations, see “Best
Practices for Using Data Stores in Stateflow” on page 7-58.

By contrast, if you use a data store memory block as a persistent global
storage area for accumulating values across time steps, disable diagnostics to
avoid generating unnecessary warnings.

How to Set Diagnostics for Shared Data
To set diagnostics on data store memory blocks, follow these steps:

1 Double-click the data store memory block in your Simulink model to open
its block parameters dialog.

2 Click the Diagnostics tab.

7-57

7 Defining Events and Data

3 Enable diagnostics by selecting warning or error from the drop-down
menu for each condition you want to detect.

4 Click OK.

Best Practices for Using Data Stores in Stateflow
This section describes best practices for binding to data stores in Stateflow and
for enforcing writes before reads when unconnected blocks share global data.

When Binding to Data Stores in Stateflow
When you bind a Stateflow data object to a data store, the Stateflow object
inherits all properties from the data store. To ensure that properties are
propagated unambiguously when you access data stores in Stateflow, create
data stores with the following properties:

• Specify the signal type as real.

• Specify a data type other than auto.

• Minimize the use of automatic-mode properties in general.

When Enforcing Writes Before Reads in Unconnected Blocks
To enforce writes before reads when unconnected blocks share global data in
Stateflow charts, follow these guidelines:

• Segregate reads into separate blocks from writes.

• Assign priorities to blocks so that write blocks are invoked before read
blocks.

To learn how to set a block’s execution priority to influence its execution
order, see the section on controlling and displaying sorted order in the
Using Simulink documentation.

7-58

Sharing Data Between Charts and with External Modules

Sharing Data Between Charts and with External Modules
The Stateflow machine is the parent of all Stateflow charts in a model, along
with external code that you include with a target for the model. You can share
Stateflow data between charts in the Stateflow machine and with external
modules.

• “Sharing Data Between Charts in a Stateflow Machine” on page 7-59

• “Sharing Stateflow Data with External Modules” on page 7-60

Sharing Data Between Charts in a Stateflow Machine
You can share data and events between Stateflow charts in a single Stateflow
machine by

• Defining local data and events that are parented by the Stateflow machine

• Defining data store memory objects that are parented by each Stateflow
chart that wants to share the data.

Sharing Local Data and Events Between All Charts in a
Stateflow Machine
To share local data between all charts in a single Stateflow machine, follow
these steps:

1 Use the Model Explorer to add a data object or event to the Stateflow
machine in which the charts reside, as described in “Adding Data Using
the Model Explorer” on page 7-27.

2 Set the scope of the data object or event to Local, as described in Setting
Data Properties in the Data Dialog.

The new data object or event should be visible to all charts in the parent
Stateflow machine.

Sharing Data Store Memory Between Charts in a Stateflow
Machine
You can use data store memory objects as a mechanism for sharing data
between selected charts in a single Stateflow machine. Follow these steps:

7-59

7 Defining Events and Data

1 Use the Model Explorer to add a data object to each Stateflow chart that
wants to share the data, as described in “Adding Data Using the Model
Explorer” on page 7-27.

2 Give each data object the same name.

3 Set the scope of each data object to Data Store Memory.

Each data store memory object you add represents a common area of memory
storage and, therefore, functions as a global variable. You can extend the use
of data store memory objects for sharing data with Simulink, as described in
“Sharing Global Data with Simulink” on page 7-53.

Sharing Stateflow Data with External Modules
A Stateflow machine can share data with external modules, such as Stateflow
charts in other machines or external Stateflow code assigned to the machine.
The methodology requires that a Stateflow machine export the data definition
to the external module and, in turn, that the external module import the data
definition from the Stateflow machine. Similarly, a Stateflow machine can
import data that has been exported by an external module.

Exporting Data to External Modules

To export data from the Stateflow machine to external modules, follow these
steps:

• In the Model Explorer, add a data object to the Stateflow machine, as
described in Adding Data Using the Model Explorer.

• Set the scope of the data to Exported.

When Data is Exported to External Code Assigned to the Stateflow
Machine. For each exported data object, the Stateflow code generator creates
a C declaration of the form

type data;

where type is the C type of the exported data object — such as int16 or
double — and data is the object’s Stateflow name. For example, suppose that

7-60

Sharing Data Between Charts and with External Modules

your Stateflow machine defines an exported int16 item named counter. The
Stateflow code generator exports the item as the C declaration

int16_T counter;

where int16_T is a defined type for int16 integers in Stateflow.

The code generator includes declarations for exported data in the generated
target’s global header file, thereby making the declarations visible to external
code compiled into or linked to the target.

See “Exported Data” on page 10-35 for an example of Stateflow data exported
to Stateflow external code.

When Data is Exported to an External Stateflow Machine. For each
Stateflow machine that wants to share the data exported from the external
machine, you must define a data object of the same name as the exported
data and set its scope to Imported.

Importing Data from External Modules
To import externally-defined data into a Stateflow machine, follow these steps:

1 In the Model Explorer, add a data object to the Stateflow machine, as
described in Adding Data Using the Model Explorer.

2 Give the data object the same name as the external data.

3 Set the scope of the data to Imported.

When Data is Imported from External Code Assigned to the Stateflow
Machine. For each imported data object, the Stateflow code generator
assumes that external code provides a prototype of the form

type data;

where type is the C data type corresponding to the Stateflow data type of the
imported item — such as int32 or double — and data is the object’s Stateflow
name. For example, suppose that your Stateflow machine defines an imported
int32 integer named counter. The Stateflow code generator expects the item
to be defined in the external C code as

7-61

7 Defining Events and Data

int32_T counter;

See “Imported Data” on page 10-36 for an example of Stateflow external code
data imported into Stateflow.

When Data is Imported from an External Stateflow Machine. Make
sure that the external Stateflow machine contains a data definition of scope
Exported with the same name as the imported data objects.

7-62

Typing Stateflow Data

Typing Stateflow Data
The term data type refers to the way computers represent numbers in memory.
The type determines the amount of storage allocated to data, the method used
to encode its value as a pattern of binary digits, and the operations available
for manipulating the data.

This section describes the methods for representing data types in Stateflow in
the following topics:

• “Specifying Modes and Types” on page 7-63 — Explains how to specify data
types based on modes and scopes

• “Built-In Data Types” on page 7-66 — Describes the data types that
Stateflow supports

• “Inheriting Data Types from Simulink” on page 7-67 — Explains how to
add input and output data that interacts with Simulink signals

• “Deriving Data Types from Previously Defined Data” on page 7-68 —
Describes how to specify data types that are based on previously-defined
data

• “Typing Data by Using an Alias” on page 7-69 — Shows how to use a
data type alias

• “Strong Data Typing with Simulink I/O” on page 7-70 — Explains the
impact of using strong data typing with Simulink I/O

Specifying Modes and Types
To specify the type of a Stateflow data object, follow these steps:

1 Choose a mode in the Data type mode field of the Data properties dialog.

The following modes are defined for each scope:

7-63

7 Defining Events and Data

Scope Data Type Modes

Built-in Expression Fixed
point

Inherited Bus
Object

Local yes yes yes yes

Constant yes yes yes

Parameter yes yes yes yes

Input yes yes yes yes yes

Output yes yes yes yes yes

Data Store
Memory

yes

2 Based on the mode you select, specify a data type as follows:

Mode What To Specify

Built-in In the Data type field, select from the drop-down list of supported data
types, as described in “Built-In Data Types” on page 7-66.

Expression Enter an expression that evaluates to a data type in the Data type field.
The following expressions are allowed:

• Alias type from the MATLAB workspace, as described in “Typing Data
by Using an Alias” on page 7-69.

• type operator to specify the type of previously defined data, as described
in “Deriving Data Types from Previously Defined Data” on page 7-68.

• fixdt function to create a Simulink.NumericType object describing a
fixed-point or floating-point data type

For more information on how to build expressions in the Data properties
dialog, see “Entering Expressions and Parameters for Data Properties” on
page 7-42.

7-64

Typing Stateflow Data

Mode What To Specify

Fixed point Specify the following information about the fixed point data:

• Whether the data is signed or unsigned.

• Word length

• Scaling mode

For information on how to specify these fixed point data properties, see
“Fixed-Point Data Properties” on page 7-37.

7-65

7 Defining Events and Data

Mode What To Specify

Inherited You cannot specify a value. The data type is inherited from previously-defined
data, based on the scope you selected for the data object, as follows:

• If scope is Input, data type is inherited from the Simulink input signal
on the designated input port (see “Sharing Input and Output Data with
Simulink” on page 7-46)

• If scope is Output, data type is inherited from the Simulink output signal
on the designated output port (see “Sharing Input and Output Data with
Simulink” on page 7-46)

Note Inheriting data types from output signals is not recommended. See
“Guidelines for Inheriting Data and Event Properties” on page 7-77.

• If scope is Parameter, data type is inherited from the associated
parameter, which can be defined in Simulink or the MATLAB workspace
(see “Sharing Stateflow Data with Simulink and MATLAB” on page 7-46)

• If scope is Data Store Memory, data type is inherited from the Simulink
data store to which the data object is bound (see “Sharing Global Data
with Simulink” on page 7-53)

Bus object In the Bus object field, enter the name of a Simulink.Bus object that you
have defined in the base workspace to associate with the Stateflow bus
object structure.

Note Alternatively, you can inherit bus object properties from Simulink
signals.

For more information about Stateflow bus object structures, see Chapter 11,
“Working with Structures and Bus Signals in Stateflow”.

Built-In Data Types
Stateflow provides the following built-in data types:

7-66

Typing Stateflow Data

Entry Description

double 64-bit double-precision floating point

single 32-bit single-precision floating point

int32 32-bit signed integer

int16 16-bit signed integer

int8 8-bit signed integer

uint32 32-bit unsigned integer

uint16 16-bit unsigned integer

uint8 8-bit unsigned integer

boolean Boolean (1 = true; 0 = false)

ml Typed internally with the MATLAB array
mxArray. You can assign this type to local
Stateflow data only. The ml data type
provides Stateflow data with the benefits of
the MATLAB environment, including the
ability to assign the Stateflow data object to a
MATLAB variable or pass it as an argument
to a MATLAB function. See “ml Data Type”
on page 8-34.

Inheriting Data Types from Simulink
Stateflow data objects of scope Input, Output, Parameter, and Data Store
Memory can inherit their data types from Simulink objects, as follows:

Scope: Can inherit type from:

Input Simulink input signal connected to corresponding input
port in Stateflow

7-67

7 Defining Events and Data

Scope: Can inherit type from:

Output Simulink output signal connected to corresponding
output port in Stateflow

Note Inheriting data types from output signals is not
recommended. See “Guidelines for Inheriting Data and
Event Properties” on page 7-77.

Parameter Corresponding MATLAB workspace variable or
Simulink parameter in a masked subsystem

Data Store
Memory

Corresponding Simulink data store

To configure these objects to inherit data types, create the corresponding
objects in Simulink and select Inherited as the Data type mode in the Data
properties dialog, as described in “Specifying Modes and Types” on page 7-63.

To determine the data types that were inherited, build the Simulink model
and look at the Compiled Type column for the Stateflow data object in the
Model Explorer.

Deriving Data Types from Previously Defined Data
You can use the type operator to derive data types from previously defined
Stateflow data. In the following example, the data type of the Stateflow
local data object y is specified by the Stateflow operator type(x), where x is
defined as a local data object of type int32. After you build your model, the
Compiled Type column of the Model Explorer displays the type of each
data object in the compiled simulation application.

7-68

Typing Stateflow Data

Typing Data by Using an Alias
You can specify the type of Stateflow data by using a Simulink data type alias
(see Simulink.AliasType in the Simulink Reference documentation). After
you build the model, the Compiled Type column of the Model Explorer
displays the type used in the compiled simulation application. In the following
example, Stateflow local data y is typed by the alias MyFloat, with BaseType
set to single.

7-69

7 Defining Events and Data

Strong Data Typing with Simulink I/O

By default, inputs to and outputs from Stateflow charts are of type double.
Input signals from Simulink are converted to the type of the corresponding
input data objects in Stateflow. Likewise, the data output objects are
converted to double before they are exported as output signals to Simulink.

To interface directly with signals of data types other than double without the
need for conversion, you can enable the option Use Strong Data Typing
with Simulink I/O for the Stateflow chart (see “Specifying Chart Properties”
on page 10-6). When this option is enabled, the Stateflow chart accepts input
signals of any data type supported by Simulink, provided that the type of
the input signal matches the type of the corresponding Stateflow input data
object. Otherwise, you receive a type mismatch error.

7-70

Typing Stateflow Data

For fixed-point data, always enable the Use Strong Data Typing with
Simulink IO option to flag mismatches between input or output fixed-point
data in Stateflow and their counterparts in Simulink.

7-71

7 Defining Events and Data

Sizing Stateflow Data
You specify the size of Stateflow data by entering a value in the Size field
of the Data properties dialog, as described in “Setting General Properties”
on page 7-33.

You can enter size as a constant value or an expression. Stateflow input and
output data objects can also inherit their sizes from the Simulink signals
that connect to them.

• “Sizing Data by Expression” on page 7-72

• “Inheriting Input and Output Data Size from Simulink” on page 7-73

Sizing Data by Expression
You can use a mathematical expression to set the size of a data object to be a
scalar, vector, or n-dimensional matrix, depending on its scope (see “Size” on
page 7-36). Size expressions must resolve to a positive integer.

You set the Size property for two-dimensional arrays in [row column]
format. One-dimensional data arrays in Stateflow are compatible with
Simulink row or column vectors of the same size. For example, a Stateflow
input or output data object of size 3 is compatible with a Simulink row vector
of size [1,3], or column vector of size [3,1]. To define a row vector of size
5, set the Size to [1 5]. To define a column vector of size 6, set the Size
property to [6 1] or just 6.

You can enter a MATLAB expression for each dimension in the Size field.
Expressions can contain a mix of numeric constants, Stateflow constants,
arithmetic operators, parameters, and calls to functions such as size, min,
and max. Here are examples of valid size expressions:

k+1
size(x)
min(size(y),k)

For more information about expressions, see “Entering Expressions and
Parameters for Data Properties” on page 7-42.

7-72

Sizing Stateflow Data

Note You cannot size Stateflow input data with an expression that accepts
frame-based data from Simulink.

Inheriting Input and Output Data Size from Simulink
To configure Stateflow input and output data objects to inherit size from the
corresponding Simulink input and output signals, enter -1 in the Size field
for that data. This is the default setting for input and output data that you
add from the Stateflow Editor (see “Adding Data” on page 7-27). After you
build the model, the Compiled Size column of the Model Explorer displays
the actual size used in the compiled simulation application.

In the following example, the input data invals is connected to a Constant
block that specifies a four-element vector. The Compiled Size field displays
the correct inherited size of 4 for invals.

Inheriting the size of input data is complete for all cases. The inherited size of
output data is inferred from chart actions that store values in the specified
output. If the expected size in Simulink matches the inferred size, inheritance
is successful. In all other cases, a mismatch occurs during build time.

7-73

7 Defining Events and Data

Note Stateflow cannot inherit frame-based data sizes from Simulink.

7-74

Defining Temporary Data

Defining Temporary Data
You can define temporary data in graphical, truth table, and Embedded
MATLAB functions. Temporary data persists only while the function executes.
For example, you can designate a loop counter to have Temporary scope if its
value does not need to persist after the function completes.

To define temporary data for a Stateflow function, follow these steps:

1 Select Explore from the Tools menu in the Stateflow Editor.

The Model Explorer opens.

2 In the Model Hierarchy pane, select the graphical, truth table, or
Embedded MATLAB function that will use the temporary data.

3 Select Data from the Add menu, or click the Add Data button:

7-75

7 Defining Events and Data

Stateflow adds a default definition for the data in the data dictionary, with
a scope set to Temporary by default, as in this example:

4 Change other properties of the data as needed, as described in “Setting
Data Properties in the Data Dialog” on page 7-31.

7-76

Guidelines for Inheriting Data and Event Properties

Guidelines for Inheriting Data and Event Properties
Inheriting properties can sometimes produce unpredictable results. This
section presents guidelines for inheriting properties when

• The object is output data

• The Stateflow block is in a library

Inheriting Output Data Properties
It is not recommended that Stateflow output data inherit properties from
output signals because the values are back propagated from Simulink and
may, therefore, be unpredictable.

In the Stateflow action language, inherited properties of outputs are
determined solely by external information from Simulink and not from the
code. By contrast, within the Embedded MATLAB subset — used in Truth
tables and Embedded MATLAB functions — inherited properties of outputs
are determined solely from the code and the properties of the inputs.

Inheriting Properties in Libraries
Stateflow blocks in libraries can inherit event and data properties. However,
multiple instances of the same library in a model must inherit the same
values for those properties.

7-77

7 Defining Events and Data

Transferring Events and Data Across Models
When you copy a Stateflow Chart from one Simulink model to another, all
data and event objects in the chart hierarchy are copied except those parented
by the Stateflow machine. However, you can use the Model Explorer to
transfer individual events and data objects from machine to machine.

To copy objects, follow these steps:

1 In the Contents pane of the Model Explorer, right–click the event or
data object you want to copy and select Copy from the drop-down menu.

2 In the Model Hierarchy pane, right–click the destination Stateflow
machine and select Paste from the drop-down menu.

To move objects, click the event or data object in the Contents pane of the
Model Explorer and drag it to the destination Stateflow machine in the
Model Hierarchy pane.

7-78

8

Using Actions in Stateflow

Stateflow attaches actions to a state or transition through its label. The
actions in action language can be broadcast events, condition statements,
function calls, variable assignments and operations, and so on. Many are very
similar to statements in C or MATLAB. Stateflow also defines categories for
the actions that you specify, known as action types. This chapter describes
the action types of states and transitions and the actions that they contain in
the following sections:

Defining Action Types (p. 8-3) Gives a description of each type of
action language available to states
and transitions and shows their
behavior in an example.

Using Operations in Actions (p. 8-12) Describes the available data
operations in Stateflow action
language.

Using Special Symbols in Actions
(p. 8-20)

Learn the special symbols Stateflow
uses to provide the user with special
features in action language notation.

Calling C Functions in Actions
(p. 8-23)

Describes the C functions that you
can call directly in Stateflow action
language.

Using MATLAB Functions and Data
in Actions (p. 8-29)

Tells you how you can call MATLAB
functions and access MATLAB
workspace variables in action
language, using the ml namespace
operator or the ml function.

8 Using Actions in Stateflow

Using Data and Event Arguments in
Actions (p. 8-42)

Tells you how to reference data
defined at different levels of
containment in a Stateflow chart
when you use them as arguments
for functions that you call in action
language.

Using Arrays in Actions (p. 8-44) Describes how to use Stateflow data
arrays in action language.

Broadcasting Events in Actions
(p. 8-46)

Describes event broadcasting and
directed event broadcasting in action
language.

Using Temporal Logic in Actions
(p. 8-51)

You can test the occurrence of
a specified multiple of events.
Learn how to use temporal logic in
Stateflow action language.

Using Change Detection in Actions
(p. 8-60)

Describes how to detect changes in
Stateflow data values at each time
step

Using Bind Actions to Control
Function-Call Subsystems (p. 8-74)

Describes how to bind a function-call
subsystem to a state.

8-2

Defining Action Types

Defining Action Types
Stateflow attaches actions to states and transitions through the syntax of
their labels. Each action is entered as an action of a particular type. States
specify actions through five action types: entry, during, exit, bind, and on
event_name. Transitions specify actions through four action types: event
trigger, condition, condition action, and transition action. This section
describes and gives examples of the action language types for states and
transitions in the following topics:

• “State Action Types” on page 8-3 — Introduces you to the notation and
meaning of actions that accompany states.

• “Transition Action Types” on page 8-7 — Introduces you to the notation and
meaning of actions that accompany transitions.

• “Example of Action Type Execution” on page 8-9 — Shows how the different
action types interact in executing example Stateflow diagram.

State Action Types
States can have different action types, which include entry, during, exit,
bind, and, on event_name actions. The actions for states are assigned to an
action type using label notation with the following general format:

name/
entry:entry actions
during:during actions
exit:exit actions
bind:data_name, event_name
on event_name:on event_name actions

The following example shows examples of state action types:

8-3

8 Using Actions in Stateflow

After you enter the name in the state’s label, enter a carriage return and
specify the actions for the state. A description of each action type is given in
the following topics:

Note The order that you use to enter action types in the label is irrelevant.

Entry Actions
Entry actions are preceded by the prefix entry or en for short, followed by a
required colon (:), followed by one or more actions. Separate multiple actions
with a carriage return, semicolon (;), or a comma (,). If you enter the name
and slash followed directly by actions, the actions are interpreted as entry
action(s). This shorthand is useful if you are specifying entry actions only.

Entry actions are executed for a state when the state is entered (becomes
active). In the preceding example in “State Action Types” on page 8-3, the
entry action id = x+y is executed when the state A is entered by the default
transition.

For a detailed description of the semantics of entering a state, see “Entering a
State” on page 3-21 and “State Execution Example” on page 3-24.

Exit Actions
Exit actions are preceded by the prefix exit or ex for short, followed by a
required colon (:), followed by one or more actions. Separate multiple actions
with a carriage return, semicolon (;), or a comma (,).

8-4

Defining Action Types

Exit actions for a state are executed when the state is active and a transition
out of the state is taken.

For a detailed description of the semantics of exiting a state, see “Exiting an
Active State” on page 3-23 and “State Execution Example” on page 3-24.

During Actions
During actions are preceded by the prefix during or du for short, followed by a
required colon (:), followed by one or more actions. Separate multiple actions
with a carriage return, semicolon (;), or a comma (,).

During actions are executed for a state when it is active and an event occurs
and no valid transition to another state is available.

For a detailed description of the semantics of executing an active state, see
“Executing an Active State” on page 3-23 and “State Execution Example”
on page 3-24.

Bind Actions
Bind actions are preceded by the prefix bind, followed by a required colon (:),
followed by one or more events or data. Separate multiple data/events with
a carriage return, semicolon (;), or a comma (,).

Bind actions bind the specified data and events to a state. Data bound to a
state can be changed by the actions of that state or its children. Other states
and their children are free to read the bound data, but they cannot change it.
Events bound to a state can be broadcast only by that state or its children.
Other states and their children are free to listen for the bound event, but
they cannot send it.

Bind actions are applicable to a Stateflow diagram whether the binding state
is active or not. In the preceding example in “State Action Types” on page 8-3,
the bind action bind: id, time_out for state A binds the data id and the
event time_out to state A. This forbids any other state (or its children) in the
Stateflow diagram from changing id or broadcasting event time_out.

8-5

8 Using Actions in Stateflow

If another state includes actions that change data or send events that are
bound to another state, a parsing error results. The following example
demonstrates a few of these error conditions:

Binding a function-call event to a state also binds the function-call subsystem
that it calls. In this case, the function-call subsystem is enabled when the
binding state is entered and disabled when the binding state is exited. For
a detailed description of this feature, see “Using Bind Actions to Control
Function-Call Subsystems” on page 8-74.

On Event_Name Actions
On event_name actions are preceded by the prefix on, followed by a
unique event, event_name, followed by one or more actions. Separate
multiple actions with a carriage return, semicolon (;), or a comma (,). You can
specify actions for more than one event by adding additional on event_name
lines for different events. If you want different events to trigger different
actions, enter multiple on event_name action statements in the state’s label,
each specifying the action for a particular event or set of events, for example:

on ev1: action1();
on ev2: action2();

On event_name actions for a state are executed when the state is active and
the event event_name is received by the state. This is also accompanied by
the execution of any during actions for the state.

For a detailed description of the semantics of executing an active state, see
“Executing an Active State” on page 3-23.

8-6

Defining Action Types

Transition Action Types
In “State Action Types” on page 8-3, you see how Stateflow attaches actions to
the label for a state. Stateflow also attaches actions to a transition through
its label. Transitions can have different action types, which include event
triggers, conditions, condition actions, and transition actions. The actions
for transitions are assigned to an action type using label notation with the
following general format:

event_trigger[condition]{condition_action}/transition_action

The following example shows examples of transition action types:

Event Triggers
In transition label syntax, event triggers appear first as the name of an event.
They have no distinguishing special character to separate them from other
actions in a transition label. In the example in “Transition Action Types” on
page 8-7, both transitions from state A have event triggers. The transition
from state A to state B has the event trigger event2 and the transition from
state A to state C has the event trigger event1.

8-7

8 Using Actions in Stateflow

Event triggers specify an event that causes the transition to be taken, provided
the condition, if specified, is true. Specifying an event is optional. The absence
of an event indicates that the transition is taken upon the occurrence of any
event. Multiple events are specified using the OR logical operator (|).

Conditions
In transition label syntax, conditions are Boolean expressions enclosed in
square brackets ([]). In the example in “Transition Action Types” on page
8-7, the transition from state A to state C has the condition temp > 50.

A condition is a Boolean expression to specify that a transition occurs given
that the specified expression is true. The following are some guidelines for
defining and using conditions:

• The condition expression must be a Boolean expression of some kind that
evaluates to either true (1) or false (0).

• The condition expression can consist of any of the following:

- Boolean operators that make comparisons between data and numeric
values

- A function that returns a Boolean value

- The in(state_name)condition function that is evaluated as true when
the state specified as the argument is active. The full state name,
including any ancestor states, must be specified to avoid ambiguity.

Note A chart cannot use the In condition function to trigger actions
based on the activity of states in other charts.

- Temporal conditions (see “Using Temporal Logic in Actions” on page 8-51)

• The condition expression should not call a function that causes the
Stateflow diagram to change state or modify any variables.

• Boolean expressions can be grouped using & for expressions with AND
relationships and | for expressions with OR relationships.

• Assignment statements are not valid condition expressions.

8-8

Defining Action Types

• Unary increment and decrement actions are not valid condition expressions.

Condition Actions
In transition label syntax, condition actions follow the transition condition
and are enclosed in curly braces ({}). In the example in “Transition Action
Types” on page 8-7, the transition from state A to state B has the condition
action func(), a function call.

Condition actions are executed as soon as the condition is evaluated as true,
but before the transition destination has been determined to be valid. If no
condition is specified, an implied condition evaluates to true and the condition
action is executed.

Transition Actions
In transition label syntax, transition actions are preceded with a forward
slash (/). In the example in “Transition Action Types” on page 8-7, the
transition from state A to state B has the transition action data1 = 5.

Transition actions are executed when the transition is actually taken. They
are executed after the transition destination has been determined to be valid,
and the condition, if specified, is true. If the transition consists of multiple
segments, the transition action is only executed when the entire transition
path to the final destination is determined to be valid.

Example of Action Type Execution
In “State Action Types” on page 8-3 and “Transition Action Types” on page
8-7, you are introduced to the notation and meaning of the action language
types in Stateflow. In this topic, you see how Stateflow action language types
interact when you execute the following example Stateflow diagram:

8-9

8 Using Actions in Stateflow

If the Stateflow diagram is turned on, the following takes place:

1 The default transition to state A is taken.

2 The entry action id = x+y is executed.

3 The event time_out is bound to state A.

4 State A is active.

If state A is active and the Stateflow diagram receives the event event2, the
following takes place:

1 The exit action broadcast of the event time_out is executed.

2 State A becomes inactive.

3 The transition action data1 = 5 is executed.

4 State B becomes active.

8-10

Defining Action Types

If state A is active and the Stateflow diagram receives the event event1, the
following takes place:

1 The condition temp > 50 is evaluated.

If condition is Then

True
(temp > 50)

The remaining steps are executed and the
transition is taken.

False
(temp <= 50)

The remaining steps are not executed. The
transition is not taken and State A remains active.

2 The condition action call to the function func1() is executed.

3 The exit action broadcast of the event time_out is executed.

4 State A becomes inactive.

5 The transition action data1 = 5 is executed.

6 State B becomes active.

8-11

8 Using Actions in Stateflow

Using Operations in Actions
Stateflow maintains a set of allowable operations between Stateflow data in
action language. The following sections categorize the operations you can use
in Stateflow action language:

• “Binary and Bitwise Operations” on page 8-12 — Lists and describes the
supported action language operations that require two operands.

• “Unary Operations” on page 8-15 — Lists and describes the supported
action language operations that require one operand.

• “Unary Actions” on page 8-15 — Lists and describes the supported action
language operations that require one operand and an operator to the right.

• “Assignment Operations” on page 8-16 — Lists and describes the supported
action language operations that assign the results of an operation to an
operand.

• “Pointer and Address Operations” on page 8-17 — Lists and describes the
supported action language operations that point to the location of data.

• “Type Cast Operations” on page 8-17 — Lists and describes the supported
action language operations that change the data type of an operand.

Binary and Bitwise Operations
The table that follows summarizes the interpretation of all binary operators
in Stateflow action language. Table order gives relative operator precedence;
highest precedence (10) is at the top of the table. Binary operators are
evaluated left to right (left associative).

You can specify that the binary operators &, ^, |, &&, and || are interpreted
as bitwise operators in Stateflow generated C code for a chart or for all the
charts in a model. See these individual operators in the table that follows for
specific binary or bitwise operator interpretations.

Example Precedence Description

a * b 10 Multiplication

a / b 10 Division

8-12

Using Operations in Actions

Example Precedence Description

a %% b 10 Modulus

a + b 9 Addition

a - b 9 Subtraction

a >> b 8 Shift operand a right by b bits.
Noninteger operands for this operator
are first cast to integers before the bits
are shifted.

a << b 8 Shift operand a left by b bits. Noninteger
operands for this operator are first cast
to integers before the bits are shifted.

a > b 7 Comparison of the first operand greater
than the second operand

a < b 7 Comparison of the first operand less than
the second operand

a >= b 7 Comparison of the first operand greater
than or equal to the second operand

a <= b 7 Comparison of the first operand less than
or equal to the second operand

a == b 6 Comparison of equality of two operands

a ~= b 6 Comparison of inequality of two operands

a != b 6 Comparison of inequality of two operands

a <> b 6 Comparison of inequality of two operands

8-13

8 Using Actions in Stateflow

Example Precedence Description

a & b 5 One of the following:

• Bitwise AND of two operands

Enabled when Enable C-bit
operations is selected in chart
properties dialog. See “Specifying
Chart Properties” on page 10-6.

• Logical AND of two operands

Enabled when Enable C-bit
operations is cleared in chart
properties dialog.

a ^ b 4 One of the following:

• Bitwise XOR of two operands

Enabled when Enable C-bit operations
is selected in chart properties dialog. See
“Specifying Chart Properties” on page
10-6.

• Operand a raised to power b

Enabled when Enable C-bit operations
is cleared in chart properties dialog.

8-14

Using Operations in Actions

Example Precedence Description

a | b 3 One of the following:

• Bitwise OR of two operands

Enabled when Enable C-bit operations
is selected in chart properties dialog. See
“Specifying Chart Properties” on page
10-6.

• Logical OR of two operands

Enabled when Enable C-bit operations
is cleared in chart properties dialog.

a && b 2 Logical AND of two operands

a || b 1 Logical OR of two operands

Unary Operations
The following unary operators are supported in Stateflow action language.
Unary operators have higher precedence than binary operators and are
evaluated right to left (right associative).

Example Description

~a Logical NOT of a

Complement of a (if bitops is enabled)

!a Logical NOT of a

-a Negative of a

Unary Actions
The following unary actions are supported in Stateflow action language.

8-15

8 Using Actions in Stateflow

Example Description

a++ Increment a

a-- Decrement a

Assignment Operations
The following assignment operations are supported in Stateflow action
language.

Example Description

a = expression Simple assignment

a := expression Used primarily with fixed-point numbers. See
“Assignment (=, :=) Operations” on page 9-25 for a
detailed description.

a += expression Equivalent to a = a + expression

a -= expression Equivalent to a = a - expression

a *= expression Equivalent to a = a * expression

a /= expression Equivalent to a = a / expression

The following assignment operations are supported in Stateflow action
language when Enable C-bit operations is selected in the properties dialog
for the chart. See “Specifying Chart Properties” on page 10-6.

Example Description

a |= expression Equivalent to a = a | expression (bit operation). See
operation a | b in “Binary and Bitwise Operations”
on page 8-12.

a &= expression Equivalent to a = a & expression (bit operation). See
operation a & b in “Binary and Bitwise Operations”
on page 8-12.

a ^= expression Equivalent to a = a ^ expression (bit operation). See
operation a ^ b in “Binary and Bitwise Operations”
on page 8-12.

8-16

Using Operations in Actions

Pointer and Address Operations
The address operator is available for use with both custom code variables and
Stateflow variables. The pointer operator is available for use with custom
code variables only.

Note The action language parser uses a relaxed set of restrictions. As a
result, many syntax errors are not trapped until compilation.

The following examples show syntax that is valid for use with custom code
variables only.

varStruct.field = <expression>;
(*varPtr) = <expression>;
varPtr->field = <expression>;
myVar = varPtr->field;
varPtrArray[index]->field = <expression>;
varPtrArray[expression]->field = <expression>;
myVar = varPtrArray[expression]->field;

The following examples show syntax that is valid for use both with custom
code variables and with Stateflow variables.

varPtr = &var;
ptr = &varArray[<expression>];
*(&var) = <expression>;
function(&varA, &varB, &varC);
function(&sf.varArray[<expression>]);

Type Cast Operations
Stateflow provides type cast operators to convert a value of one type to a
value that can be represented in another type. Normally, you do not need
to use type cast operators in actions because Stateflow checks whether the
types involved in a variable assignment differ and compensates by inserting
the required type cast operator of the target language (typically C) in the
generated code. However, external (custom) code might require data in a
different type from those currently available in Stateflow. In this case,
Stateflow cannot determine the required type casts and you must explicitly

8-17

8 Using Actions in Stateflow

use a Stateflow action language type cast operator to tell Stateflow the target
language type cast operator to generate.

For example, you might have a custom code function that requires integer
RGB values for a graphic plot. You might have these values in Stateflow data,
but only in data of type double. To call this function, you must type cast the
original data and assign the result to integers, which you use as arguments
to the function.

In Stateflow, type cast operations have two forms: the MATLAB type cast
form and the explicit form using the cast operator. These operators and
the special type operator, which works with the explicit cast operator, are
described in the topics that follow.

MATLAB Form Type Cast Operators
The MATLAB type casting form in Stateflow has the general form

<type_op>(<expression>)

<type_op> is a conversion type operator that can be double, single, int32,
int16, int8, uint32, uint16, uint8, or boolean. <expression> is the
expression to be converted. For example, you can cast the expression x+3 to a
16-bit unsigned integer and assign its value to the data y as follows:

y = uint16(x+3)

Explicit Type Cast Operator
You can also type cast with the explicit cast operator, which has the following
general form:

cast(<expression>,<type>)

As in the preceding example, the statement

y = cast(x+3,uint16)

tells Stateflow to cast the expression x+3 to a 16-bit unsigned integer and
assign it to y, which can be of any type.

8-18

Using Operations in Actions

type Operator
To make type casting more convenient, Stateflow also provides a type
operator that works with the explicit type cast operator cast to let you assign
types to data based on the types of other data.

The type operator returns the type of an existing Stateflow data according to
the general form

type(<data>)

where <data> is the Stateflow data whose type you want to return.

The return value from a type operation can be used only in an explicit cast
operation. For example, if you want to convert the data y to the same type as
that of data z, use the following statement:

cast(y,type(z))

In this case, the data z can have any acceptable Stateflow type.

8-19

8 Using Actions in Stateflow

Using Special Symbols in Actions
Stateflow notation uses the symbols inf, NaN, t, $, ..., %, //, /*, ;, F, and
hexadecimal notation to provide the user with special features in action
language notation as described in the following topics:

• “Comment Symbols” on page 8-20

• “Hexadecimal Notation Symbols” on page 8-20

• “Infinity Symbol, inf” on page 8-21

• “Line Continuation Symbol, ...” on page 8-21

• “Literal Code Symbol, $” on page 8-21

• “MATLAB Display Symbol, ;” on page 8-21

• “Single-Precision Floating-Point Number Symbol, F” on page 8-21

• “Time Symbol, t” on page 8-21

Comment Symbols
Use the symbols %, //, and /* to represent comments in Stateflow action
language as shown in the following examples:

% MATLAB comment line
// C++ comment line
/* C comment line */

You can optionally include comments in Stateflow generated code for a
Real-Time Workshop target (see “Configuration Parameter Reference” in
the Real-Time Workshop documentation) or a Stateflow custom target (see
“Configuring a Custom Target in Stateflow” on page 14-22). Stateflow action
language comments in generated code are represented with multibyte
character code. This means that you can have comments in code with
characters for non-English alphabets such as Japanese Kanji characters.

Hexadecimal Notation Symbols
Stateflow action language supports C style hexadecimal notation. For
example, 0xFF. You can use hexadecimal values wherever you can use decimal
values.

8-20

Using Special Symbols in Actions

Infinity Symbol, inf
Use the MATLAB symbol inf to represent infinity in Stateflow action
language. Calculations like n/0, where n is any nonzero real value, result in
inf.

Line Continuation Symbol, ...
Use the characters ... at the end of a line of action language to indicate that
the expression continues on the next line.

Literal Code Symbol, $
Use $ characters to mark action language that you want the parser to ignore
but you want to appear in the generated code. For example,

$
ptr -> field = 1.0;
$

The parser is completely disabled during the processing of anything between
the $ characters. Frequent use of literals is discouraged.

MATLAB Display Symbol, ;
Omitting the semicolon after an expression displays the results of the
expression in the MATLAB Command Window. If you use a semicolon, the
results are not displayed.

Single-Precision Floating-Point Number Symbol, F
Use a trailing F to specify single-precision floating-point numbers in Stateflow
action language. For example, you can use the action statement x = 4.56F;
to specify a single-precision constant with the value 4.56. If a trailing F does
not appear with a number, it is assumed to be double-precision.

Time Symbol, t
Use the letter t to represent absolute time inherited from Simulink in
simulation targets. For example, the condition [t - On_time > Duration]

8-21

8 Using Actions in Stateflow

specifies that the condition is true if the value of On_time subtracted from the
simulation time t is greater than the value of Duration.

Note The meaning of t for nonsimulation targets is undefined since it is
dependent upon the specific application and target hardware.

8-22

Calling C Functions in Actions

Calling C Functions in Actions
This section describes the C functions that you can call directly in Stateflow
action language. See the following topics:

• “Calling C Library Functions” on page 8-23 — Tells you how to call C
functions from the math library of your compiler or from custom libraries
that you provide.

• “Calling min and max Functions” on page 8-24 — Describes the special min
and max macros that you can call.

• “Calling User-Written C Code Functions” on page 8-25 — Tells you how to
call C functions you provide in custom code for the target you build.

Calling C Library Functions
You can call the following small subset of the C Math Library functions:

abs* acos asin atan atan2 ceil

cos cosh exp fabs floor fmod

labs ldexp log log10 pow rand

sin sinh sqrt tan tanh

*Stateflow extends the abs function beyond that of its standard C counterpart
with its own built in functionality. See “Calling the abs Function” on page
8-24.

You can call the above C Math Library functions without doing anything
special as long as you are careful to call them with the right data types. In
case of a type mismatch, Stateflow replaces the input argument with a cast of
the original argument to the expected type. For example, if you call the sin
function with an integer argument, Stateflow replaces the argument with a
cast of the original argument to a floating-point number of type double.

If you call other C library functions not specified above, be sure to include the
appropriate #include... directive in the Custom code included at the

8-23

8 Using Actions in Stateflow

top of generated code field of the Target Options dialog. See the section
“Specifying Custom Code Options for Stateflow Targets” on page 14-27.

Calling the abs Function
Stateflow extends the interpretation of its abs function beyond the standard C
version to include integer and floating-point arguments of all types as follows:

• If x is an integer of type int32, Stateflow evaluates abs(x) with the
standard C function abs applied to x, or abs(x).

• If x is an integer of type other than int32, Stateflow evaluates abs(x) with
the standard C abs function applied to a cast of x as an integer of type
int32, or abs((int32)x).

• If x is a floating point number of type double, Stateflow evaluates abs(x)
with the standard C function fabs applied to x, or fabs(x).

• If x is a floating point number of type single, Stateflow evaluates abs(x)
with the standard C function fabs applied to a cast of x as a double, or
fabs((double)x).

• If x is a fixed-point number, Stateflow evaluates abs(x) with the standard
C function fabs applied to a cast of the fixed-point number as a double, or
fabs((double)Vx), where Vx is the real-world value of x.

If you want to use the abs function in Stateflow in the strict sense of standard
C, be sure to cast its argument or return values to integer types. See “Type
Cast Operations” on page 8-17.

Note If x is declared in Stateflow custom code, Stateflow evaluates abs(x)
with the standard C abs function in all cases. For instructions on inserting
custom code into Stateflow diagrams, see “Integrating Custom Code with
Stateflow Targets” on page 14-27.

Calling min and max Functions
Although min and max are not C library functions, Stateflow enables them by
emitting the following macros automatically at the top of generated code.

#define min(x1,x2) ((x1) > (x2))? (x2):(x1)

8-24

Calling C Functions in Actions

#define max(x1,x2) ((x1) > (x2))? (x1):(x2)

To allow compatibility with user graphical functions named min() or max(),
Stateflow generates code for them with a mangled name of the following form:
<prefix>_min. However, if you export min() or max() graphical functions to
other Stateflow charts in the Stateflow machine, the name of these functions
can no longer be emitted with mangled names in generated code and conflict
occurs. To avoid this conflict, rename the min() and max() graphical functions.

Calling User-Written C Code Functions
To install your own C code functions for use in Stateflow action language,
do the following:

1 From the Tools menu, select the Open (RTW or Simulation) Target
dialog.

2 When the Open Target dialog appears, select Target Options.

3 Enter the following:

• Include a header file containing the declarations of your C code functions in
the Custom code included at the top of generated code field.

• Specify the source file name containing your C code functions in the
Custom source files field.

See “Specifying Custom Code Options for Stateflow Targets” on page 14-27.

To use your own C code functions in Stateflow action language, follow these
guidelines:

• Define a function by its name, any arguments in parentheses, and an
optional semicolon.

• String parameters to user-written functions are passed between single
quotation marks. For example, func(`string').

• An action can nest function calls.

8-25

8 Using Actions in Stateflow

• An action can invoke functions that return a scalar value (of type double in
the case of MATLAB functions and of any type in the case of C user-written
functions).

Function Call Transition Action Example
These are example formats of function calls using transition action notation.

If S1 is active, event e occurs, c is true, and the transition destination is
determined, then a function call is made to function_name with arg1, arg2,
and arg3. The transition action in the transition from S2 to S3 shows a
function call nested within another function call.

Function Call State Action Example
These are example formats of function calls using state action notation.

8-26

Calling C Functions in Actions

When the default transition into S1 occurs, S1 is marked active and then its
entry action, a function call to function_name1 with the specified arguments,
is executed and completed. If S2 is active and an event occurs, the during
action, a function call to function_name3 with the specified arguments,
executes and completes.

Passing Arguments by Reference
A Stateflow action can pass arguments to a user-written function by reference
rather than by value. In particular, an action can pass a pointer to a value
rather than the value itself. For example, an action could contain the
following call

f(&x);

where f is a custom-code C function that expects a pointer to x as an argument.

If x is the name of a data item defined in the Stateflow data dictionary, the
following rules apply.

• Do not use pointers to pass data items input from Simulink.

If you need to pass an input item by reference, for example, an array, assign
the item to a local data item and pass the local item by reference.

8-27

8 Using Actions in Stateflow

• If x is a Simulink output data item having a data type other than double,
the chart property Use strong data typing with Simulink IO must be
on (see “Specifying Chart Properties” on page 10-6).

• If the data type of x is boolean, the coder option Use bitsets to store
state-configuration must be turned off (see “Configuring Real-Time
Workshop for Stateflow” on page 14-13).

• If x is an array with its first index property set to 0 (see “Setting Data
Properties in the Data Dialog” on page 7-31), then the function must be
called as follows.

f(&(x[0]));

This passes a pointer to the first element of x to the function.

• If x is an array with its first index property set to a nonzero number (for
example, 1), the function must be called in the following way:

f(&(x[1]));

This passes a pointer to the first element of x to the function.

8-28

Using MATLAB Functions and Data in Actions

Using MATLAB Functions and Data in Actions
You can call MATLAB functions and access MATLAB workspace variables
in action language, using the ml namespace operator or the ml function. See
the following sections:

• “ml Namespace Operator” on page 8-29 – Shows you how to use MATLAB
workspace variables or call MATLAB functions through the ml namespace
operator.

• “ml Function” on page 8-30 – Shows you how to use MATLAB functions
through the ml function.

• “ml Expressions” on page 8-32 – Shows you how to mix ml namespace
operator and ml function expressions along with Stateflow data in larger
expressions.

• “ml Data Type” on page 8-34 — Shows you how to use the MATLAB
data type to keep MATLAB data in Stateflow instead of in the MATLAB
workspace.

• “Inferring Return Size for ml Expressions” on page 8-37 — Gives you
the rules for providing enough information to infer the size of the values
returned from the ml namespace operator and the ml function in larger
action language expressions.

Caution Because MATLAB functions are not available in a target
environment, do not use the ml namespace operator and the ml function if
you plan to build an RTW target that includes code from Stateflow Coder.

ml Namespace Operator
The ml namespace operator uses standard dot (.) notation to reference
MATLAB variables and functions in action language. For example, the
statement y = ml.x returns the value of the MATLAB workspace variable x
to the Stateflow data y. The statement y = ml.matfunc(arg1, arg2) passes
the return value from the MATLAB function matfunc to Stateflow data y.

If the MATLAB function you call does not require arguments, you must
still include the parentheses, as shown in the preceding examples. If the

8-29

8 Using Actions in Stateflow

parentheses are omitted, Stateflow interprets the function name as a
workspace variable, which, when not found, generates a run-time error during
simulation.

In the following examples, x, y, and z are workspace variables and d1 and
d2 are Stateflow data:

• a = ml.sin(ml.x)

In this example, the sin function of MATLAB evaluates the sine of x,
which is then assigned to Stateflow data variable a. However, because x is
a workspace variable, you must use the namespace operator to access it.
Hence, ml.x is used instead of just x.

• a = ml.sin(d1)

In this example, the sin function of MATLAB evaluates the sine of d1,
which is assigned to Stateflow data variable a. Because d1 is Stateflow
data, you can access it directly.

• ml.x = d1*d2/ml.y

The result of the expression is assigned to x. If x does not exist prior to
simulation, it is automatically created in the MATLAB workspace.

• ml.v[5][6][7] = ml.matfunc(ml.x[1][3], ml.y[3], d1, d2,
'string')

The workspace variables x and y are arrays. x[1][3] is the (1,3) element
of the two-dimensional array variable x. y[3] is the third element of
the one-dimensional array variable y. The last argument, 'string', is
a literal string.

The return from the call to matfunc is assigned to element (5,6,7)
of the workspace array, v. If v does not exist prior to simulation, it is
automatically created in the MATLAB workspace.

ml Function
You can use the ml function to specify calls to MATLAB functions through a
string expression in the action language. The format for the ml function call
uses standard function notation as follows:

ml(evalString, arg1,arg2,...);

8-30

Using MATLAB Functions and Data in Actions

evalString is a string expression that is evaluated in the MATLAB
workspace. It contains a MATLAB command (or a set of commands, each
separated by a semicolon) to execute along with format specifiers (%g, %f,
%d, etc.) that provide formatted substitution of the other arguments (arg1,
arg2, etc.) into evalString.

The format specifiers used in ml functions are the same as those used in the C
functions printf and sprintf. The ml function call is equivalent to calling
the MATLAB eval function with the ml namespace operator if the arguments
arg1,arg2,... are restricted to scalars or string literals in the following
command:

ml.eval(ml.sprintf(evalString,arg1,arg2,...))

Stateflow assumes scalar return values from ml namespace operator and ml
function calls when they are used as arguments in this context. See “Inferring
Return Size for ml Expressions” on page 8-37.

In the following examples, x is a MATLAB workspace variable, and d1 and
d2 are Stateflow data:

• a = ml('sin(x)')

In this example, the ml function calls the sin function of MATLAB to
evaluate the sine of x in the MATLAB workspace. The result is then
assigned to Stateflow data variable a. Because x is a workspace variable,
and sin(x) is evaluated in the MATLAB workspace, you enter it directly in
the evalString argument ('sin(x)').

• a = ml('sin(%f)', d1)

In this example, the sin function of MATLAB evaluates the sine of d1 in
the MATLAB workspace and assigns the result to Stateflow data variable
a. Because d1 is Stateflow data, its value is inserted in the evalString
argument ('sin(%f)') using the format expression %f. This means that if
d1 = 1.5, the expression evaluated in the MATLAB workspace is sin(1.5).

• a = ml('matfunc(%g, ''abcdefg'', x, %f)', d1, d2)

In this example, the string 'matfunc(%g, ''abcdefg'', x, %f)' is
the evalString shown in the preceding format statement. Stateflow
data d1 and d2 are inserted into that string with the format specifiers %g
and %f, respectively. The string ''abcdefg'' is a string literal with two

8-31

8 Using Actions in Stateflow

single pairs of quotation marks used to enclose it because it is part of the
evaluation string, which is already enclosed in single quotation marks.

• sfmat_44 = ml('rand(4)')

In this example, a square 4-by-4 matrix of random numbers between 0 and
1 is returned and assigned to the Stateflow data sf_mat44. Stateflow data
sf_mat44 must be defined in Stateflow as a 4-by-4 array before simulation.
If its size is different, a size mismatch error is generated during run-time.

ml Expressions
You can mix ml namespace operator and ml function expressions along with
Stateflow data in larger expressions. The following example squares the sine
and cosine of an angle in workspace variable X and adds them:

ml.power(ml.sin(ml.X),2) + ml('power(cos(X),2)')

The first operand uses the ml namespace operator to call the sin function.
Its argument is ml.X, since X is in the MATLAB workspace. The second
operand uses the ml function. Because X is in the workspace, it is included in
the evalString expression as X. The squaring of each operand is performed
with the MATLAB power function, which takes two arguments: the value
to square, and the power value, 2.

Expressions using the ml namespace operator and the ml function can be used
as arguments for ml namespace operator and ml function expressions. The
following example nests ml expressions at three different levels:

a = ml.power(ml.sin(ml.X + ml('cos(Y)')),2)

In composing your ml expressions, follow the levels of precedence set out in
“Binary and Bitwise Operations” on page 8-12. To repeat a warning note in
that section, be sure to use parentheses around power expressions with the ^
operator when you use them in conjunction with other arithmetic operators.

Stateflow checks expressions for data size mismatches in your action language
during parsing of your charts and during run-time. Because the return values
for ml expressions are not known till run-time, Stateflow must infer the size
of their return values. See “Inferring Return Size for ml Expressions” on
page 8-37.

8-32

Using MATLAB Functions and Data in Actions

Which ml Should I Use?
In most cases the notation of the ml namespace operator is more
straightforward. However, using the ml function call does offer a few
advantages:

• Use the ml function to dynamically construct workspace variables.

The following example creates four new MATLAB matrices:

This example demonstrates the use of a Stateflow for loop to create four
new matrix workspace variables in MATLAB. The default transition
initializes the Stateflow counter i to 0 while the transition segment
between the top two junctions increments it by 1. If i is less than 5, the
transition segment back to the top junction is taken and evaluates the ml
function call ml('A%d = rand(%d)',i,i) for the current value of i. When i
is greater than or equal to 5, the transition segment between the bottom
two junctions is taken and execution stops.

This results in the following MATLAB commands, which create a
workspace scalar (A1) and three matrices (A2, A3, A4):

A1 = rand(1)
A2 = rand(2)
A3 = rand(3)

8-33

8 Using Actions in Stateflow

A4 = rand(4)

• Use the ml function with full MATLAB notation.

You cannot use full MATLAB notation with the ml namespace operator, as
demonstrated by the following example:

ml.A = ml.magic(4)
B = ml('A + A''')

This example sets the workspace variable A to a magic 4-by-4 matrix using
the ml namespace operator. Stateflow data B is then set to the addition
of A and its transpose matrix, A', which produces a symmetric matrix.
Because the ml namespace operator cannot evaluate the expression A', the
ml function is used instead. However, you can call the MATLAB function
transpose with the ml namespace operator in the following equivalent
expression:

B = ml.A + ml.transpose(ml.A)

As another example, you cannot use arguments with cell arrays or subscript
expressions involving colons with the ml namespace operator. However,
these can be included in an ml function call.

ml Data Type
Stateflow data of type ml is typed internally with the MATLAB type mxArray.
This means that you can assign (store) any type of data available in Stateflow
to a data of type ml. This includes any type of data defined in Stateflow or
returned from MATLAB with the ml namespace operator or ml function.

The following features and limitations apply to Stateflow data of type ml.

• ml data can be initialized from the MATLAB workspace just like other data
in Stateflow (see the Initialize from property in “Setting Data Properties
in the Data Dialog” on page 7-31).

• Any numerical scalar or array of ml data in Stateflow can participate in
any kind of unary operation and any kind of binary operation with any
other data in Stateflow.

8-34

Using MATLAB Functions and Data in Actions

If ml data participates in any numerical operation with other data, the size
of the ml data must be inferred from the context in which it is used, just
as return data from the ml namespace operator and ml function are. See
“Inferring Return Size for ml Expressions” on page 8-37.

Note The preceding feature does not apply to ml data storing MATLAB
64 bit integers. ml data can store 64 bit MATLAB integers but cannot be
used in Stateflow action language.

• ml data cannot be defined with the scope Constant or specified as an array.

These options are disabled in the data properties dialog and Stateflow
Explorer for Stateflow data of type ml.

• ml data can be used in building a simulation target (sfun) but not in
building an RTW target (rtw).

• If data of type ml contains an array, the elements of the array can be
accessed through indexing with the following rules:

a Only arrays with numerical elements can be indexed.

b Numerical arrays can be indexed according to their dimension only.

This means that only one-dimensional arrays can be accessed by a single
index value. You cannot access a multidimensional array with a single
index value.

c The first index value for each dimension of an array is 1, and not 0, as in
C-language arrays.

In the examples that follow, mldata is a Stateflow data of type ml,
ws_num_array is a 2-by-2 MATLAB workspace array with numerical
values, and ws_str_array is a 2-by-2 MATLAB workspace array with
string values.

mldata = ml.ws_num_array; /* OK */
n21 = mldata[2][1]; /* OK for numerical data of type ml */
n21 = mldata[3]; /* NOT OK for 2-by-2 array data */
mldata = ml.ws_str_array; /* OK */
s21 = mldata[2][1]; /* NOT OK for string data of type ml*/

8-35

8 Using Actions in Stateflow

• ml data cannot have a scope outside Stateflow; that is, it cannot be scoped
as Input to Simulink or Output to Simulink.

Place Holder for Workspace Data
Both the ml namespace operator and the ml function can access data directly
in the MATLAB workspace and return it to Stateflow. However, maintaining
data in the MATLAB workspace can present Stateflow users with conflicts
with other data already resident in the workspace. Consequently, with the
ml data type, you can maintain ml data in Stateflow and use it for MATLAB
computations in Stateflow action language.

As an example, in the following Stateflow action language statements,
mldata1 and mldata2 are Stateflow data of type ml:

mldata1 = ml.rand(3);
mldata2 = ml.transpose(mldata1);

In the first line of this example, mldata1 receives the return value of the rand
function in MATLAB, which, in this case, returns a 3-by-3 array of random
numbers. Note that mldata1 is not specified as an array or sized in any way.
It can receive any MATLAB workspace data or the return of any MATLAB
function because it is defined as a Stateflow data of type ml.

In the second line of the example, mldata2, also of Stateflow data type ml,
receives the transpose matrix of the matrix in mldata1. It is assigned the
return value of the MATLAB function transpose in which mldata1 is the
argument.

Note the differences in notation if the preceding example were to use
MATLAB workspace data (wsdata1 and wsdata2) instead of Stateflow ml
data to hold the generated matrices:

ml.wsdata1 = ml.rand(3);
ml.wsdata2 = ml.transpose(ml.wsdata);

In this case, each workspace data must be accessed through the ml namespace
operator.

8-36

Using MATLAB Functions and Data in Actions

Inferring Return Size for ml Expressions
Stateflow expressions using the ml namespace operator and the ml function
are evaluated in the MATLAB workspace at run-time. This means that the
actual size of the data returned from the following expression types is known
only at run-time:

• MATLAB workspace data or functions using the ml namespace operator or
the ml function call

For example, the size of the return values from the expressions ml.var,
ml.func(), or ml(evalString, arg1, arg2,...), where var is a
MATLAB workspace variable and func is a MATLAB function, cannot be
known until run-time.

• Stateflow data of type ml

• Graphical functions that return Stateflow data of type ml

When any of these expressions is used in action language, Stateflow code
generation must create temporary Stateflow data, invisible to the user, to hold
their intermediate returns for evaluation of the full expression of which they
are a part. Because the size of these return values is not known till run-time,
Stateflow must employ context rules to infer their size for the creation of
the temporary data.

During run-time, if the actual returned value from one of these commands
differs from the inferred size of the temporary variable chosen to store
it, a size mismatch error results. To prevent these run-time errors, use
the following guidelines in constructing action language statements with
MATLAB commands or ml data:

1 The return sizes of MATLAB commands or data in an expression must
match the return sizes of peer expressions.

For example, in the expression ml.func() * (x + ml.y), if x is a 3-by-2
matrix, then ml.func() and ml.y are also assumed to evaluate to 3-by-2
matrices. If either returns a value of different size (other than a scalar),
an error results during run-time.

2 Expressions that return a scalar never produce an error.

8-37

8 Using Actions in Stateflow

You can combine matrices and scalars in larger expressions because
MATLAB practices scalar expansion. For example, in the larger expression
ml.x + y, if y is a 3-by-2 matrix and ml.x returns a scalar, the resulting
value is determined by adding the scalar value of ml.x to every member of
y to produce a matrix with the size of y, that is, a 3-by-2. The same rule
applies to subtraction (-), multiplication (*), division (/), and any other
binary operations.

3 MATLAB commands or Stateflow data of type ml can be members of the
following independent levels of expression, for which the return size must
be resolved:

• Arguments

The expression for each function argument is a larger expression for
which the return size of MATLAB commands or Stateflow data of type
ml must be determined. For example, in the expression z + func(x +
ml.y), the size of ml.y has nothing to do with the size of z, because
ml.y is used at the function argument level. However, the return size
for func(x + ml.y) must match the size of z, because they are both at
the same expression level.

• Array indices

The expression for an array index is an independent level of expression
that is required to be scalar in size. For example, in the expression x +
arr[y], the size of y has nothing to do with the size of x because y and x
are at different levels of expression, and y must be a scalar.

4 The return size for an indexed array element access must be a scalar.

For example, the expression x[1][1], where x is a 3-by-2 array, must
evaluate to a scalar.

5 MATLAB command or data elements used in an expression for the input
argument for a MATLAB function called through the ml namespace
operator are resolved for size using the rule for peer expressions (preceding
rule 1) for the expression itself, because there is no size definition prototype
available.

For example, in the function call ml.func(x + ml.y), if x is a 3-by-2 array,
ml.y must return a 3-by-2 array or a scalar.

8-38

Using MATLAB Functions and Data in Actions

6 MATLAB command or data elements used for the input argument for a
graphical function in an expression are resolved for size by the function’s
prototype.

For example, if the graphical function gfunc has the prototype
gfunc(arg1), where arg1 is a 2-by-3 Stateflow data array, then the calling
expression, gfunc(ml.y + x), requires that both ml.y and x evaluate to
2-by-3 arrays (or scalars) during run-time.

7 ml function calls can take only scalar or string literal arguments. Any
MATLAB command or data used to specify an argument for the ml function
must return a scalar value.

8 In an assignment, the size of the right-hand expression must match the size
of the left-hand expression, with one exception: if the left-hand expression
is a single MATLAB variable such as ml.x or a single Stateflow data of type
ml, then the sizes of both left-hand expression and right-hand expression
are determined by the right-hand expression.

For example, in the expression s = ml.func(x), where x is a 3-by-2 matrix
and s is scalar data in Stateflow, ml.func(X) must return a scalar to
match the left-hand expression, s. However, in the expression ml.y = x +
s, where x is a 3-by-2 data array and s is scalar, the left-hand expression,
workspace variable y, is assigned the size of a 3-by-2 array to match the
size of the right-hand expression, x+s, a 3-by-2 array.

9 In an assignment, Stateflow column vectors on the left-hand side are
compatible with MATLAB row or column vectors of the same size on the
right-hand side.

A matrix you define with a row dimension of 1 is considered a row vector. A
matrix you define with one dimension or with a column dimension of 1 is
considered a column vector. For example, in the expression s = ml.func(),
where ml.func() returns a 1-by-3 matrix, if s is a vector of size 3, the
assignment is valid.

10 If you cannot resolve the return size of MATLAB command or data
elements in a larger expression by any of the preceding rules, they are
assumed to return scalar values.

8-39

8 Using Actions in Stateflow

For example, in the expression ml.x = ml.y + ml.z, none of the preceding
rules can be used to infer a common size among ml.x, ml.y, and ml.z. In
this case, both ml.y and ml.z are assumed to return scalar values. And
even if ml.y and ml.z return matching sizes at run-time, if they return
nonscalar values, a size mismatch error results.

11 The preceding rules for resolving the size of member MATLAB commands
or Stateflow data of type ml in a larger expression apply only to cases in
which numeric values are expected for that member. For nonnumeric
returns, a run-time error results.

For example, the expression x + ml.str, where ml.str is a string
workspace variable, produces a run-time error stating that ml.str is not
a numeric type.

Note Member MATLAB commands or data of type ml in a larger expression
are limited to numeric values (scalar or array) only if they participate in
numeric expressions.

12 Stateflow has special cases in which it does no size checking to resolve the
size of MATLAB command or data expressions that are members of larger
expressions. In the cases shown, use of a singular MATLAB element such
as ml.var, ml.func(), ml(evalString, arg1, arg2,...), Stateflow data
of type ml, or a graphical function returning a Stateflow data of type ml,
does not require that size checking be enforced at run-time. In these cases,
assignment of a return to the left-hand side of an assignment statement or
to a function argument is made without consideration for a size mismatch
between the two:

• An assignment in which the left-hand side is a MATLAB workspace
variable

For example, in the expression ml.x = ml.y, ml.y is a MATLAB
workspace variable of any size and type (structure, cell array, string,
and so on).

• An assignment in which the left-hand side is a data of type ml

For example, in the expression m_x = ml.func(), m_x is a Stateflow
data of type ml.

8-40

Using MATLAB Functions and Data in Actions

• Input arguments of a MATLAB function

For example, in the expression ml.func(m_x, ml.x, gfunc()), m_x is a
Stateflow data of type ml, ml.x is a MATLAB workspace variable of any
size and type, and gfunc() is a Stateflow graphical function that returns
a Stateflow data of type ml. Even though Stateflow does nothing to check
the size of the input type, if the passed-in data is not of the expected
type, an error results from the function call ml.func().

• Arguments for a graphical function that are specified as Stateflow data
of type ml in its prototype statement

Note If inputs in the preceding cases are replaced with non-MATLAB
numeric Stateflow data, a conversion to an ml type is performed.

8-41

8 Using Actions in Stateflow

Using Data and Event Arguments in Actions
When you use data and event objects as arguments to functions that you call
in action language, they are assumed to be defined at the same level in the
hierarchy as the action language that references them. If they are not found
at that level, Stateflow attempts to resolve the object name by searching up
the hierarchy. Data or event object arguments that are parented anywhere
else must have their path hierarchies defined explicitly.

In the following example, state A calls the graphical function addit to add the
Stateflow data x and y and store the result in data z.

The following Model Explorer windows show the data z is defined for state
A, but the data x and y are defined for state AA, a substate of A.

8-42

Using Data and Event Arguments in Actions

The call to function addit from state A can resolve z because it is owned by A.
However, it cannot resolve x and y by looking above state A. Therefore, the
function call must reference x and y explicitly to their owner, state AA.

There are a variety of functions that you can call in Stateflow action language
that use data as arguments. See the following sections:

• “Using Functions to Extend Actions” on page 6-29

• “Calling C Functions in Actions” on page 8-23

• “Using MATLAB Functions and Data in Actions” on page 8-29

Only the temporal logic operators take events as an argument. See “Using
Temporal Logic in Actions” on page 8-51.

8-43

8 Using Actions in Stateflow

Using Arrays in Actions
This section tells you how to use Stateflow data arrays in action language.
See the following topics:

• “Array Notation” on page 8-44 — Gives examples of array notation in
action language.

• “Arrays and Custom Code” on page 8-45 — Shows you how to access arrays
provided by custom code that you build into a Stateflow target.

Array Notation
Use C style syntax in the action language to access array elements.

local_array[1][8][0] = 10;

local_array[i][j][k] = 77;

var = local_array[i][j][k];

As an exception to this style, scalar expansion is available within the action
language. This statement assigns a value of 10 to all the elements of the
array local_array.

local_array = 10;

Scalar expansion is available for performing general operations. This
statement is valid if the arrays array_1, array_2, and array_3 have the
same value for the Sizes property.

array_1 = (3*array_2) + array_3;

Note Use the same notation for accessing arrays in Stateflow, from Simulink,
and from custom code.

8-44

Using Arrays in Actions

Arrays and Custom Code
Stateflow action language provides the same syntax for Stateflow arrays
and custom code arrays.

See also “Integrating Custom Code with Stateflow Targets” on page 14-27.

Note Any array variable that is referred to in a Stateflow chart but is not
defined in the data dictionary is identified as a custom code variable.

8-45

8 Using Actions in Stateflow

Broadcasting Events in Actions
You can specify an event to be broadcast in the action language. Events
have hierarchy (a parent) and scope. The parent and scope together define a
range of access to events. It is primarily the event’s parent that determines
who can trigger on the event (has receive rights). See “Name” on page 7-10
for more information.

See the following sections for an understanding of broadcasting events in
action language:

• “Event Broadcasting” on page 8-46 — Gives examples of using broadcast
events to synchronize behavior between AND (parallel) states.

• “Directed Event Broadcasting” on page 8-48 — Shows you how to use the
send function to send an event to a specific state.

Event Broadcasting
Broadcasting an event in the action language is most useful as a means of
synchronization among AND (parallel) states. Recursive event broadcasts
can lead to definition of cyclic behavior. Cyclic behavior can be detected only
during simulation.

Event Broadcast State Action Example
The following is an example of the state action notation for an event broadcast:

8-46

Broadcasting Events in Actions

See “Event Broadcast State Action Example” on page 3-84 for information on
the semantics of this notation.

Event Broadcast Transition Action Example
The following is an example of transition action notation for an event
broadcast.

See “Event Broadcast Transition Action with a Nested Event Broadcast
Example” on page 3-87 for information on the semantics of this notation.

8-47

8 Using Actions in Stateflow

Directed Event Broadcasting
You can specify a directed event broadcast in actions. Using a directed event
broadcast, you can broadcast a specific event to a specific receiver state in the
same chart. The receiving state must be active at the time the broadcast is
executed to receive and potentially act on the directed event broadcast.

Directed event broadcasting is a more efficient means of synchronization
among parallel (AND) states. Using directed event broadcasting improves the
efficiency of the generated code. As is true in event broadcasting, recursive
event broadcasts can lead to definition of cyclic behavior.

Note An action in one chart cannot broadcast events to states defined in
another chart.

Directed Event Broadcasting Using send
The format of the directed event broadcast with send is as follows:

send(event_name,state_name)

where event_name is broadcast to state_name and any offspring of that state
in the hierarchy. The event sent must be visible to both the sending state
and the receiving state (state_name).

The state_name argument can include a full hierarchy path to the state.
For example, if the state A contains the state A1, send an event e to state A1
with the following broadcast:

send(e, A.A1)

Note Do not use the chart name in the full hierarchy path to a state. Formal
chart names include the subsystem they are in. For example, in the demo
model fuelsys the chart control logic is in the subsystem fuel rate
controller. This means that the formal name for the chart control logic
is fuel rate controller/control logic. This name includes the forward
slash character (’/’), which is not a valid character in Stateflow identifiers.

8-48

Broadcasting Events in Actions

This is an example of a directed event broadcast using the
send(event_name,state_name) transition action as a transition action.

In this example, event E_one must be visible in both A and B. See “Directed
Event Broadcast Using Send Example” on page 3-96 for information on the
semantics of this notation.

Directed Event Broadcasting Using Qualified Event Names
The format of the direct event broadcast using qualified event names is as
follows:

state_name.event_name

where event_name is broadcast to its owning state (state_name) and any
offspring of that state in the hierarchy. The event sent is visible only to the
receiving state (state_name).

8-49

8 Using Actions in Stateflow

The state_name argument can also include a full hierarchy path to the
receiving state. Again, do not use the chart name in the full path name
of the state.

The following example illustrates the use of a qualified event name in a
directed event broadcast.

In this example, event E_one is visible only to state B. See “Directed Event
Broadcasting Using Qualified Event Names Example” on page 3-98 for
information on the semantics of this notation.

8-50

Using Temporal Logic in Actions

Using Temporal Logic in Actions
Temporal logic operators are Boolean operators that operate on recurrence
counts of Stateflow events. See the following subsections for individual
descriptions of each temporal logic operator:

• “Rules for Using Temporal Logic Operators” on page 8-51

• “after Temporal Logic Operator” on page 8-52

• “before Temporal Logic Operator” on page 8-54

• “at Temporal Logic Operator” on page 8-55

• “every Temporal Logic Operator” on page 8-56

• “in Temporal Logic Operator” on page 8-57

• “Conditional and Event Notation” on page 8-58

• “Temporal Logic Events” on page 8-58

Rules for Using Temporal Logic Operators
The following diagram illustrates the use of temporal logic operators in action
language:

8-51

8 Using Actions in Stateflow

The following rules apply generally to the use of temporal logic operators:

• The recurring event on which a temporal operator operates is called the
base event. Any Stateflow event can serve as a base event for a temporal
operator.

Note Temporal logic operators can also operate on recurrences of implicit
events, such as state entry or exit events or data change events. See
“Defining Implicit Events” on page 7-24.

• For a chart with no Simulink input events, you can use the wakeup (or
tick) event to denote the implicit event of a chart waking up.

• Temporal logic operators can appear only in conditions on transitions
originating from states and in state actions.

Note This means you cannot use temporal logic operators as conditions
on default transitions or flow graph transitions.

The state on which the temporally conditioned transition originates or in
whose during action the condition appears is called the temporal operator’s
associated state.

• You must use event notation (see “Temporal Logic Events” on page 8-58) to
express temporal logic conditions on events in state during actions.

after Temporal Logic Operator
The after operator checks whether an event occurs after a specified time.

Syntax

after(n, E)

where E is the base event for the after operator and n is one of the following:

• A constant integer greater than 0

8-52

Using Temporal Logic in Actions

• An expression that evaluates to an integer value greater than or equal to 0

Description
The after operator is true if the base event E has occurred n times since
activation of its associated state. Otherwise, it is false. In a chart with no
input events, after(n,wakeup) (or after(n,tick)) evaluates to true after
the chart has woken up n times.

Note The after operator resets its counter for E to 0 each time the associated
state is activated.

Example
The following example illustrates use of the after operator in a transition
expression.

CLK[after(10, CLK) && temp == COLD]

This example permits a transition out of the associated state only if there
have been 10 occurrences of the CLK event since the state was activated and
the temp data item has the value COLD.

The next example illustrates usage of event notation for temporal logic
conditions in transition expressions.

after(10, CLK)[temp == COLD]

This example is semantically equivalent to the first example.

The next example illustrates setting a transition condition for any event
visible in the associated state while it is activated.

[after(10, CLK)]

This example permits a transition out of the associated state on any event
after 10 occurrences of the CLK event since activation of the state.

8-53

8 Using Actions in Stateflow

The next two examples underscore the semantic distinction between an after
condition on its own base event and an after condition on a nonbase event.

CLK[after(10,CLK)]
ROTATE[after(10,CLK)]

The first expression says that the transition must occur as soon as 10 CLK
events have occurred after activation of the associated state. The second
expression says that the transition can occur no sooner than 10 CLK events
after activation of the state, but possibly later, depending on when the
ROTATION event occurs.

The next example illustrates usage of an after event in a state’s during
action.

Heater_on
on after(5*BASE_DELAY, CLK): status('heater on');

This example causes the Heater_on state to display a status message each
CLK cycle, starting 5*BASE_DELAY clock cycles after activation of the state.
Note the use of event notation to express the after condition in this example.
Use of conditional notation is not allowed in state during actions.

before Temporal Logic Operator
The before operator checks whether an event occurs before a specified time.

Syntax

before(n, E)

where E is the base event for the before operator and n is one of the following:

• A constant integer greater than 0

• An expression that evaluates to an integer value greater than or equal to 0

Description
The before operator is true if the base event E has occurred fewer than ntimes
since activation of its associated state. Otherwise, it is false. In a chart with

8-54

Using Temporal Logic in Actions

no input events, before(n,wakeup) or before(n,tick) evaluates to true
before the chart has woken up n times.

Note The before operator resets its counter for E to 0 each time the
associated state is activated.

Example
The following example illustrates the use of the before operator in a
transition expression.

ROTATION[before(10, CLK)]

This expression permits a transition out of the associated state only on
occurrence of a ROTATION event but no later than 10 CLK cycles after activation
of the state.

The next example illustrates usage of a before event in a state’s during
action.

Heater_on
on before(MAX_ON_TIME, CLK): temp++;

This example causes the Heater_on state to increment the temp variable once
per CLK cycle until the MAX_ON_TIME limit is reached.

at Temporal Logic Operator
The at operator checks for a specific ordinal occurrence of an event.

Syntax

at(n, E)

where E is the base event for the at operator and n is one of the following:

• A constant integer greater than 0

• An expression that evaluates to an integer value greater than or equal to 0

8-55

8 Using Actions in Stateflow

Description
The at operator is true only at the nth occurrence of the base event E since
activation of its associated state. Otherwise, it is false. In a chart with no
input events, at(n,wakeup) (or at(n,tick)) evaluates to true when the chart
wakes up for the nth time.

Note The at operator resets its counter for E to 0 each time the associated
state is activated.

Example
The following example illustrates the use of the at operator in a transition
expression:

ROTATION[at(10, CLK)]

This expression permits a transition out of the associated state only if a
ROTATION event occurs exactly 10 CLK cycles after activation of the state.

The next example illustrates usage of an at event in a state’s during action.

Heater_on
on at(10, CLK): status('heater on');

This example causes the Heater_on state to display a status message 10 CLK
cycles after activation of the associated state.

every Temporal Logic Operator
Theevery operator checks for every ordinal occurrence of an event.

Syntax

every(n, E)

where E is the base event for the every operator and n is one of the following:

• A constant integer greater than 0

8-56

Using Temporal Logic in Actions

• An expression that evaluates to an integer value greater than or equal to 0

Description
The every operator is true at every nth occurrence of the base event E since
activation of its associated state. Otherwise, it is false. In a chart with
no input events, every(n,wakeup) (or every(n,tick)) evaluates to true
whenever the chart wakes up an integer multiple n times.

Note The every operator resets its counter for E to 0 each time the associated
state is activated. As a result, this operator is useful only in state during
actions.

Example
The following example illustrates the use of the every operator in a state.

Heater_on
on every(10, CLK): status('heater on');

This example causes the Heater_on state to display a status message every
10 CLK cycles after activation of the associated state.

in Temporal Logic Operator
The in operator checks for active states.

Syntax

in(S)

where S is a fully-qualified state.

Description
The in operator is true and returns 1 whenever state S is active; otherwise, it
returns zero.

8-57

8 Using Actions in Stateflow

Example
The following example illustrates the use of the in operator in a state during
action:

du: numfans = in(FAN1.On) + in(FAN2.On);

This example checks whether the states FAN1.On and FAN2.On are active.
The boolean expression sums the values returned by each in operator and,
therefore, indicates whether 0, 1, or 2 fans are operating in any given time
step.

Conditional and Event Notation
Stateflow treats the following notations as equivalent,

E[tlo(n, E) && C]
tlo(n, E)[C]

where tlo is a temporal logic operator (after, before, at, every), E is
the operator’s base event, n is the operator’s occurrence count, and C is
any conditional expression. For example, the following expressions are
functionally equivalent in Stateflow:

CLK[after(10, CLK) && temp == COLD]
after(10, CLK)[temp == COLD]

The first notation is referred to as the conditional notation for temporal logic
operators and the second notation as the event notation.

Note You can use conditional and event notation interchangeably in
transition expressions. However, you must use the event notation in state
during actions.

Temporal Logic Events
Although temporal logic does not introduce any new events into a Stateflow
model, it is useful to think of the change of value of a temporal logic condition
as an event. For example, suppose that you want a transition to occur from
state A exactly 10 clock cycles after activation of the state. One way to achieve

8-58

Using Temporal Logic in Actions

this would be to define an event called ALARM and to broadcast this event 10
CLK events after state A is entered. You would then use ALARM as the event
that triggers the transition out of state A.

An easier way to achieve the same behavior is to set a temporal logic condition
on the CLK event that triggers the transition out of state A.

CLK[after(10, CLK)]

Note that this approach does not require creation of any new events.
Nevertheless, conceptually it is useful to think of this expression as equivalent
to creation of an implicit event that triggers the transition. Hence, Stateflow
supports the equivalent event notation (see “Temporal Logic Events” on page
8-58).

after(10, CLK)

Note that the event notation allows you to set additional constraints on the
implicit temporal logic "event," for example,

after(10, CLK)[temp == COLD]

This expression says, "Exit state A if the temperature is cold but no sooner
than 10 clock cycles."

8-59

8 Using Actions in Stateflow

Using Change Detection in Actions
Stateflow provides operators for automatically detecting changes in Stateflow
chart data. This topic describes the heuristics of change detection in Stateflow
and how to use change detection operators.

• “About Change Detection” on page 8-60

• “Running a Model That Demonstrates Change Detection” on page 8-61

• “How Change Detection Works” on page 8-64

• “Change Detection Operators” on page 8-67

• “Change Detection Example” on page 8-71

About Change Detection
Stateflow can detect changes in the following types of chart data from one
time step to the next:

• Inputs

• Outputs

• Local variables

• Data bound to Simulink data store memory

(For more information, see “Sharing Global Data with Simulink” on page
7-53.)

For each of these types of data, Stateflow provides operators that detect the
following changes:

Type of Change Operator

Data changes value from the
beginning of the last time step to the
beginning of the current time step.

See “hasChanged Operator” on page
8-68.

8-60

Using Change Detection in Actions

Type of Change Operator

Data changes from a specified value
at the beginning of the last time step
to a different value at the beginning
of the current time step.

See “hasChangedFrom Operator” on
page 8-69.

Data changes to a specified value at
the beginning of the current time
step from a different value at the
beginning of the last time step.

See “hasChangedTo Operator” on
page 8-70.

Change detection operators return 1 if the data value changes or 0 if there is
no change. See “Change Detection Operators” on page 8-67.

Running a Model That Demonstrates Change
Detection
Stateflow ships with a model sf_tetris2 that demonstrates how you can
detect asynchronous changes in inputs — in this case, user keystrokes —
to manipulate a Tetris shape as it moves through the playing field. The
Stateflow chart TetrisLogic implements this logic:

8-61

8 Using Actions in Stateflow

TetrisLogic contains a subchart called Moving that calls the operator
hasChanged to determine when users press any of the Tetris control keys, and
then moves the shape accordingly. Here is a look inside the subchart:

8-62

Using Change Detection in Actions

To run the demo model from MATLAB, follow these steps:

1 At the MATLAB command prompt, type:

demos

The MATLAB Help Browser opens the Demos tab in the Help Navigator
pane.

2 In the Help Navigator pane, navigate to Simulink > Stateflow > General
Applications.

8-63

8 Using Actions in Stateflow

3 In the right contents pane, click Tetris.

A description of the Tetris demo model appears.

4 In the upper right corner of the contents pane, click the link Open this
model.

The model opens on your desktop.

Tip You can also open the model by typing sf_tetris2 at the MATLAB
command prompt.

How Change Detection Works
Stateflow detects changes in chart data by evaluating values at time step
boundaries. That is, Stateflow compares the value at the beginning of the
previous execution step with the value at the beginning of the current
execution step. To detect changes, Stateflow automatically double-buffers
these values in local variables, as follows:

Local Buffer: Stores:

var_name_prev Value of data at the beginning of the last
time step

var_name_start Value of data at the beginning of the
current time step

Note Double-buffering occurs once per time step except if multiple input
events occur in the same time step. Then, double-buffering occurs once per
input event (see “Handling Changes When Multiple Input Events Occur”
on page 8-67).

When you invoke change detection operations in an action in a Stateflow
chart, Stateflow performs the following operations:

8-64

Using Change Detection in Actions

1 Double-buffers data values after a Simulink event triggers the chart, but
before the chart begins execution.

2 Compares values in _prev and _start buffers. If the values match, the
change detection operator returns 0 (no change); otherwise, it returns
1 (change).

The following diagram places these tasks in the context of the chart life cycle:

8-65

8 Using Actions in Stateflow

Where Change Detection Occurs in the Chart Life Cycle

����
����� ���	�
��
���

��
���������
��
����
����
����

������ ���	�
��
���
��
���������
��
�	�����
����
����

� ���	�
��
���
��
��
��
�	�����
����
����

��
�����

�������

����
�����
������

����������
�����
��
����	����

���	��

����������

�����

���	����
�����
��������

���������
�����

���

��

���������
�	��� �	�����
���

����� �������

������ ��

!����
����
��
�����
	����
����

�����

!����
����	���

������
�������
��������������
��
��� ���

����

�����"#
$$$
�����"�

���!�����
%�&
��������

����� ��������

8-66

Using Change Detection in Actions

That fact that buffering occurs before chart execution has implications for
change detection in the following scenarios:

• “Handling Transient Changes in Local Variables” on page 8-67

• “Handling Changes When Multiple Input Events Occur” on page 8-67

Handling Transient Changes in Local Variables
Stateflow attempts to filter out transient changes in local chart variables by
evaluating their values only at time boundaries (see “How Change Detection
Works” on page 8-64). This behavior means that Stateflow evaluates the
specified local variable only once at the end of the execution step and,
therefore, returns a consistent result. That is, the return value remains
constant even if the value of the local variable fluctuates within a given time
step.

For example, suppose that in the current time step a local variable temp
changes from its value at the previous time step, but then reverts to the
original value. In this case, the operator hasChanged(temp) returns 0 for the
next time step, indicating that no change occurred. For more information, see
“Change Detection Operators” on page 8-67.

Handling Changes When Multiple Input Events Occur
When multiple input events occur in the same time step, Stateflow updates
the _prev and _start buffers once per event. In this way, Stateflow detects
changes between input events, even if the changes occur more than once
in a given time step.

Change Detection Operators
Change detection operators check for changes in chart inputs, outputs, and
local variables, and in Stateflow data that is bound to Simulink data store
memory.

You can invoke change detection operators wherever you call built-in functions
in Stateflow — in state actions, transition actions, condition actions, and
conditions. There are three change detection operators:

8-67

8 Using Actions in Stateflow

hasChanged Operator (p. 8-68) Detects any change since the last
time step

hasChangedFrom Operator (p. 8-69) Detects whether data changes from
a specified value

hasChangedTo Operator (p. 8-70) Detects whether data changes to a
specified value

hasChanged Operator
The hasChanged operator detects any change in Stateflow data since the last
time step, using the following heuristic:

hasChanged x x x
otherwise
if prev start() = ≠{ 0

1

where xstart represents the value at the beginning of the current time step
and xprev represents the value at the beginning of the previous time step.

Syntax.

hasChanged (u)
hasChanged (m [expr])
hasChanged (s [expr])

where u is a scalar or matrix variable, m is a matrix, and s is aggregate data.

The arguments u, m, and s must be one of the following data types:

• Input, output, or local variable in a Stateflow chart

• Stateflow data that is bound to Simulink data store memory

The arguments cannot be expressions or custom code variables.

Description. hasChanged (u) returns 1 if u changes value since the last
time step. If u is a matrix, hasChanged returns 1 if any element of u changes
value since the last time step.

8-68

Using Change Detection in Actions

hasChanged (m [expr]) returns 1 if the value at location expr of matrix
m changes value since the last time step. expr can be an arbitrary expression
that evaluates to a scalar value.

hasChanged (s [expr]) returns 1 if the value at location expr of
aggregate data s has changed since the last time step. s must be a fully
qualified name, such as u.foo.bar, which resolves to an aggregate data type
such as a structure or bus signal. expr can be an arbitrary expression that
evaluates to a scalar value.

All forms of hasChanged return zero if Stateflow writes to the data, but does
not change its value.

hasChangedFrom Operator
The hasChangedFrom operator detects when Stateflow data changes from a
specified value since the last time step, using the following heuristic:

hasChangedFrom x x x x and x
otherwise
if xprev start prev(,)0

0

0
1= ≠ ={

where xstart represents the value at the beginning of the current time step
and xprev represents the value at the beginning of the previous time step.

Syntax.

hasChangedFrom (u , v)
hasChangedFrom (m [expr], v)
hasChangedFrom (s [expr], v)

where u is a scalar or matrix variable, m is a matrix, and s is aggregate data.

The arguments u, m, and s must be one of the following data types:

• Input, output, or local variable in a Stateflow chart

• Stateflow data that is bound to Simulink data store memory

8-69

8 Using Actions in Stateflow

Note The first arguments u, m, and s cannot be expressions or custom code
variables. The second argument v can be an expression. However, if the first
argument is a matrix variable, then v must resolve to either a scalar value or
a matrix value with the same dimensions as the first argument.

Description. hasChangedFrom (u, v) returns 1 if u changes from the
value specified by v since the last time step. If u is a matrix variable whose
elements all equal the value specified by v, hasChangedFrom returns 1 if one
or more elements of the matrix changes to a different value in the current
time step.

hasChangedFrom (m [expr], v) returns 1 if the value at location expr of
matrix m changes from the value specified by v since the last time step. expr
can be an arbitrary expression that evaluates to a scalar value.

hasChangedFrom (s [expr]) returns 1 if the value at location expr of
aggregate data s changes from the value specified by v since the last time
step. s must be a fully qualified name, such as u.foo.bar, which resolves to
an aggregate data type such as a structure or bus signal. expr can be an
arbitrary expression that evaluates to a scalar value.

hasChangedTo Operator
The hasChangedTo operator detects when Stateflow data changes to a
specified value since the last time step, using the following heuristic:

hasChangedTo x x x x and x
otherwise
if xprev k start(,)0

0

0
1= ≠ ={

where xstart represents the value at the beginning of the current time step
and xprev represents the value at the beginning of the previous time step.

Syntax.

hasChangedTo (u , v)
hasChangedTo (m [expr], v)
hasChangedTo (s [expr], v)

8-70

Using Change Detection in Actions

where u is a scalar or matrix variable, m is a matrix, and s is aggregate data.

The arguments u, m, and s must be one of the following data types:

• Input, output, or local variable in a Stateflow chart

• Stateflow data that is bound to Simulink data store memory

Note The first arguments u, m, and s cannot be expressions or custom code
variables. The second argument v can be an expression. However, if the first
argument is a matrix variable, then v must resolve to either a scalar value or
a matrix value with the same dimensions as the first argument.

Description. hasChangedTo (u, v) returns 1 if u changes to the value
specified by v in the current time step. If u is a matrix variable, hasChangedTo
returns 1 if any its of its elements changes value so that all elements of the
matrix equal the value specified by v in the current time step.

hasChangedTo (m [expr], v) returns 1 if the value at location expr of
matrix m changes to the value specified by v in the current time step. expr can
be an arbitrary expression that evaluates to a scalar value.

hasChangedTo (s [expr]) returns 1 if the value at location expr of
aggregate data s changes to the value specified by v in the current time
step. s must be a fully qualified name, such as u.foo.bar, which resolves to
an aggregate data type such as a structure or bus signal. expr can be an
arbitrary expression that evaluates to a scalar value.

Change Detection Example
The following model shows how to use the hasChanged, hasChangedFrom,
and hasChangedTo operators to detect specific changes in an input signal.
In this example, a Ramp block sends a discrete, increasing time signal to a
Stateflow chart, as follows:

8-71

8 Using Actions in Stateflow

The model uses a fixed-step solver with a step size of 1. The signal increments
by 1 at each time step. The Stateflow chart analyzes the input signal for the
following changes at each time step:

• Any change from the previous time step

• Change to the value 3

• Change from the value 3

To check the signal, the Stateflow chart calls three change detection operators
in a transition action, and outputs the return values as y1, y2, and y3, as
follows:

8-72

Using Change Detection in Actions

During simulation, the outputs y1, y2, and y3 represent changes in the input
signal, as shown in this scope:

��
	

�'

�����������
��
'
��
(')

�����
��
'
����	��
	
�����

����������

�
 ��

�*

�����������
��
'
��
(*
����
	
�������
��
*)
�����������
����
��
+

��
(,
����
	
���������
����
*
��
,

�#
�����������
��
'
��
(,

����
	
�������
����
*
��
,)
�����������
����
��
+

��
(-
����
	
���������

����
,
��
-

8-73

8 Using Actions in Stateflow

Using Bind Actions to Control Function-Call Subsystems
Bind actions in a state bind specified data and events to that state. Events
bound to a state can be broadcast only by the actions in that state or its
children. You can also bind a function-call event to a state to enable or disable
the function-call subsystem that it triggers. The function-call subsystem
enables when the state with the bound event is entered and disables when
that state is exited. This means that the execution of the function-call
subsystem is fully bound to the activity of the state that calls it.

Examine the effects of binding a function-call subsystem trigger event in
the following topics:

• “Binding a Function-Call Subsystem to a State” on page 8-74

• “Example of How to Bind a Function-Call Subsystem to a State” on page
8-78

• “Simulating a Bound Function-Call Subsystem” on page 8-80

• “Using Stateflow Logic with Binding” on page 8-83

• “Avoiding Muxed Trigger Events with Binding” on page 8-87

Binding a Function-Call Subsystem to a State
By default, a function-call subsystem is controlled by the Stateflow chart in
which the associated function call output event is defined. This association
means that the function-call subsystem is enabled when the chart wakes up
and remains active until the chart is deactivated. To achieve a finer level of
control, you can bind a function-call subsystem to a state within the chart
hierarchy by using a bind action (see “Bind Actions” on page 8-5).

Bind actions can bind function call output events to a state. When you create
this type of binding, the function-call subsystem that is called by the event
is also bound to the state. In this situation, the function call subsystem is
enabled when the state is entered and disabled when the state is exited.

When you bind a function-call subsystem to a state, you can fine-tune the
behavior of the subsystem when it is enabled and disabled, as described in
the following sections:

8-74

Using Bind Actions to Control Function-Call Subsystems

• “Handling Outputs When the Subsystem is Disabled” on page 8-75

• “Controlling Behavior of States When the Subsystem is Enabled” on page
8-76

Handling Outputs When the Subsystem is Disabled
Although function-call subsystems do not execute while they are disabled,
their output signals are available to other blocks in the model. If a
function-call subsystem is bound to a state, you can hold its outputs at their
values from the previous time step or reset the outputs to their initial values
when the subsystem is disabled. Follow these steps:

1 Double-click the outport block of the subsystem to open its Block
Parameters dialog, as in this example:

2 Select an option for the field Output when disabled, as follows:

8-75

8 Using Actions in Stateflow

Select: To:

held Maintain most recent output value

reset Reset output to its initial value

3 Click OK to record the settings.

Note Setting Output when disabled is meaningful only when the
function-call subsystem is bound to a state, as described in “Binding a
Function-Call Subsystem to a State” on page 8-74.

Controlling Behavior of States When the Subsystem is Enabled
If a function-call subsystem is bound to a state, you can hold the subsystem
state variables at their values from the previous time step or reset the state
variables to their initial conditions when the subsystem executes. In this way,
the binding state gains full control of state variables for the function-call
subsystem.

Follow these steps:

1 Double-click the trigger port of the subsystem to open its Block
Parameters dialog, as in this example:

8-76

Using Bind Actions to Control Function-Call Subsystems

2 Select an option for the field States when enabling, as follows:

Select: To:

held Maintain most recent values of the states of the
subsystem that contains the trigger port

reset Revert to the initial conditions of the states of the
subsystem that contains this trigger port

inherit Inherit this setting from the the function-call
initiator’s parent subsystem. If the parent of the
initiator is the model root, the inherited setting is
held. If the trigger has multiple initiators, the parents
of all initiators must have the same setting, either all
held or all reset.

3 Click OK to record the settings.

8-77

8 Using Actions in Stateflow

Note Setting States when enabling is meaningful only when the
function-call subsystem is bound to a state, as described in “Binding a
Function-Call Subsystem to a State” on page 8-74.

Example of How to Bind a Function-Call Subsystem
to a State
The control of a Stateflow state that binds a function-call subsystem trigger is
best understood through the creation and execution of an example model. In
the following example, a Simulink model triggers a function-call subsystem
with a function-call trigger event E bound to state A of a Stateflow diagram.

The function subsystem contains a trigger port block, an input port, an output
port, and a simple block diagram. The block diagram increments a count by 1
each time, using a Unit Delay block to store the count.

The Stateflow diagram contains two states, A and B, and connecting
transitions, along with some actions. Notice that event E is bound to state A
with the binding action bind:E. Event E is defined for the Stateflow diagram
in the example with a scope of Output to Simulink and a trigger type of
Function Call.

8-78

Using Bind Actions to Control Function-Call Subsystems

The Block Parameters for the trigger port are configured as follows:

Notice that the States when enabling field is set to the default value reset.
This resets the state values for the function-call subsystem to zero when
it is enabled.

Notice also that the Sample time type field is set to the default value
triggered. This sets the function-call subsystem to execute only when it is
triggered by a calling event while it is enabled.

Setting Sample time type to periodic enables the Sample time field
below it, which defaults to 1. These settings force the function-call subsystem
to execute for each time step specified in the Sample time field while it is
enabled. To accomplish this, the state that binds the calling event for the
function-call subsystem must send an event for the time step coinciding with
the specified sampling rate in the Sample time field. States can send events
with entry or during actions at the simulation sample rate. Therefore, for
fixed step sampling, the sample time you enter in the Sample time field must
be an integer multiple of the fixed step size. For variable step sampling, there
are no limits on what you enter in the Sample time field.

8-79

8 Using Actions in Stateflow

Simulating a Bound Function-Call Subsystem
To see the control that a state can have over the function-call subsystem
whose trigger event it binds, begin simulating the example model in “Example
of How to Bind a Function-Call Subsystem to a State” on page 8-78. For
the purposes of display, the simulation parameters for this model specify a
fixed-step solver with a fixed-step size of 1. Take note of model behavior in
the following steps, which record the simulating Stateflow diagram and the
output of the subsystem.

1 The default transition to state A is taken.

2 State A becomes active as shown.

When state A becomes active, it executes its bind and entry actions.
The binding action, bind:E, binds event E to state A. This enables the
function-call subsystem and resets its state variables to 0.

State A also executes its entry action, en:E, which sends an event E to
trigger the function-call subsystem and execute its block diagram. The
block diagram increments a count by 1 each time using a Unit Delay block.
Since the previous content of the Unit Delay block is 0 after the reset, the
starting output point is 0 and the current value of 1 is held for the next
call to the subsystem.

8-80

Using Bind Actions to Control Function-Call Subsystems

3 The next update event from Simulink tests state A for an outgoing
transition.

The temporal operation on the transition to state B, after(10, tick),
allows the transition to be taken only after ten update events are received.
This means that for the second update, the during action of state A, du:E, is
executed, which sends an event to trigger the function-call subsystem. The
held content of the Unit Delay block, 1, is output to the scope as shown.

The subsystem also adds 1 to the held value to produce the value 2, which
is held by the Unit Delay block for the next triggered execution.

4 The next eight update events repeat step 2, which increment the subsystem
output by 1 each time as shown.

8-81

8 Using Actions in Stateflow

5 On the 11th update event, the transition to state B is taken as shown.

This makes state B active. Since the binding state A is no longer active, the
function-call subsystem is disabled, and its output drops to 0.

6 When the next sampling event occurs, the transition from state B to state A
is taken.

Once again, the binding action, bind: E, enables the subset and resets its
output to 0 as shown.

8-82

Using Bind Actions to Control Function-Call Subsystems

7 With the next 10 update events, steps 2 through 5 repeat, producing the
following output:

Using Stateflow Logic with Binding
You can use Stateflow logic to control function-call subsystems that model
C-like switch, if-else, for, and while statements in Simulink. Although
you can model switch behavior in a Stateflow diagram, the generated code
approximates the switch logic by using if-else statements.

8-83

8 Using Actions in Stateflow

For example, the following model demonstrates a Simulink switch statement
with subsystems controlled by bind actions:

8-84

Using Bind Actions to Control Function-Call Subsystems

8-85

8 Using Actions in Stateflow

In this model, the Stateflow diagram controls three subsystems, S1, S2, and
S3, through the bind actions for three states, A, B, and C, respectively. In
this example, the value of the case argument c determines the subsystem to
execute. State A becomes active and stays active when c is 0. State B becomes
active and stays active when c is 1. State C becomes active and stays active
when c has any other value.

When state A is active, the event S1 is bound to state A, which enables
subsystem S1. The entry and during actions for A broadcast the event S1
whenever the model is updated for sampling. This means that while A is
active, the subsystem S1 is executed for each sample time. The same applies
to subsystem S2 for state B, and to subsystem S3 for state C.

The generated code for this model does not contain switch statements.
Instead, it uses if-else logic, as represented by the following pseudocode:

if (c==0)
if (!in(A))

subsystem S1
else if (c==1)

if(!in(B))
subsystem S2

else
if (!in(C))

subsystem S3

You can modify the previous Stateflow diagram to control a Simulink model
with an if-else statement, as shown.

8-86

Using Bind Actions to Control Function-Call Subsystems

In this example, State A becomes active and stays active when the condition
Acon is true. State B becomes active and stays active when the condition Bcon
is true and the condition Acon is false. State C becomes active and stays active
when both conditions Acon and Bcon are false. This creates the following
if-else statement in Simulink:

if (Acon)
subsystem S1

elseif (Bcon)
subsystem S2

subsystem S3

Avoiding Muxed Trigger Events with Binding
The simulated example in “Simulating a Bound Function-Call Subsystem” on
page 8-80 shows how binding events gives control of a function-call subsystem
to a single state in a Stateflow diagram. This control can be undermined if
you allow other events to trigger the function-call subsystem through a mux.

8-87

8 Using Actions in Stateflow

For example, the following Simulink diagram defines two function-call events
to trigger a function-call subsystem through a mux:

In the Stateflow diagram, E1 is bound to state A, but E2 is not. This means
that state B is free to send the triggering event E2 in its entry action. When
you simulate this model, you receive the following output:

8-88

Using Bind Actions to Control Function-Call Subsystems

Notice that broadcasting E2 in state B changes the output, which now rises to
a height of 10 before the binding action in state A resets the data.

Note Binding is not recommended when users provide multiple trigger
events to a function-call subsystem through a mux. Muxed trigger events can
interfere with event binding and cause undefined behavior.

8-89

8 Using Actions in Stateflow

8-90

9

Using Fixed-Point Data in
Stateflow

Fixed-point numbers use integers and integer arithmetic to approximate real
numbers. They are an efficient means for performing computations involving
real numbers without requiring floating-point support in underlying system
hardware. The following topics describe fixed-point data in Stateflow. Be sure
to read “Tips for Using Fixed-Point Data in Stateflow” on page 9-9 when you
are ready to begin using it.

What Is Fixed-Point Data? (p. 9-2) Provides a general discussion of the
underlying arithmetic of fixed-point
numbers.

Using Fixed-Point Data in Stateflow
(p. 9-5)

Shows you how to define and use
fixed-point data in Stateflow

Fixed-Point "Bang-Bang Control"
Example (p. 9-13)

Examines a Stateflow demo that
uses fixed-point data in Stateflow
to perform limited floating-point
operations on an 8 bit processor

Operations with Fixed-Point Data
(p. 9-17)

Lists the operations supported
for Stateflow fixed-point data
and the means by which they are
implemented in Stateflow generated
code

9 Using Fixed-Point Data in Stateflow

What Is Fixed-Point Data?
This section presents a high-level overview of fixed-point arithmetic. Use this
section to understand the theory of fixed-point numbers and their operations
with the following topics:

• “Fixed-Point Numbers” on page 9-2

• “Fixed-Point Operations” on page 9-3

For more discussion on the theory of fixed-point numbers, see “Fixed-Point
Numbers” in the Simulink Fixed Point documentation.

Fixed-Point Numbers
Fixed-point numbers use integers and integer arithmetic to represent real
numbers and arithmetic with the following encoding scheme:

where

• V is a precise real-world value that you want to approximate with a
fixed-point number.

• is the approximate real-world value that results from fixed-point
representation.

• Q is an integer that encodes . It is referred to as the quantized integer.

Q is the actual stored integer value used in representing the fixed-point
number; that is, if a fixed-point number changes, its quantized integer, Q,
changes – S and B remain unchanged.

• S is a coefficient of Q referred to as the slope.

• B is an additive correction referred to as the bias.

Fixed-point numbers encode real quantities (for example, 15.375) using
the stored integer Q. You set Q’s value by solving the preceding equation

for Q and rounding the result to an integer value as follows:

9-2

What Is Fixed-Point Data?

Q = round((V - B)/S)

For example, suppose you want to represent the number 15.375 in a
fixed-point type with the slope S = 0.5 and the bias B = 0.1. This means that

Q = round((15.375 — 0.1)/0.5) = 30

However, because Q is rounded to an integer, you have lost some precision in
representing the number 15.375. If you calculate the number that Q actually
represents, you now get a slightly different answer.

So using fixed-point numbers to represent real numbers with integers involves
the loss of some precision. However, if you choose S and B correctly, you can
minimize this loss to acceptable levels.

Fixed-Point Operations
Now that you can express fixed-point numbers as , you can define
operations between two fixed-point numbers.

The general equation for an operation between fixed-point operands is as
follows:

c = a <op> b

where a, b, and c are all fixed-point numbers, and <op> refers to one of the
binary operations: addition, subtraction, multiplication, or division.

The general form for a fixed-point number x is SxQx + Bx (see “Fixed-Point
Numbers” on page 9-2). Substituting this form for the result and operands in
the preceding equation yields the following:

(ScQc + Bc) = (SaQa + Ba) <op> (SbQb + Bb)

The values for Sc and Bc are usually chosen by Stateflow for each operation
(see “Promotion Rules for Fixed-Point Operations” on page 9-19) and are based

9-3

9 Using Fixed-Point Data in Stateflow

on the values for Sa, Sb, Ba and Bb which are entered for each fixed-point data
(see “Specifying Fixed-Point Data in Stateflow” on page 9-7).

Note Stateflow also offers a more precise means for choosing the values for Sc
and Bc when you use the := assignment operator (that is, c := a <op> b).
See “Assignment (=, :=) Operations” on page 9-25 for more detail.

Using the values for Sa, Sb, Sc, Ba, Bb, and Bc, you can solve the preceding
equation for Qc for each binary operation as follows:

• The operation c=a+b implies that

Qc = ((Sa/Sc)Qa + (Sb/Sc)Qb + (Ba + Bb - Bc)/Sc)

• The operation c=a-b implies that

Qc = ((Sa/Sc)Qa - (Sb/Sc)Qb - (Ba - Bb - Bc)/Sc)

• The operation c=a*b implies that

Qc = ((SaSb/Sc)QaQb + (BaSb/Sc)Qa + (BbSa/Sc)Qa + (BaBb - Bc)/Sc)

• The operation c=a/b implies that

Qc = ((SaQa + Ba)/(Sc(SbQb + Bb)) - (Bc/Sc))

The fixed-point approximations of the real number result of the operation c =
a <op> b are given by the preceding solutions for the value Qc. In this way,
all fixed-point operations are performed using only the stored integer Q for
each fixed-point number and integer operation.

9-4

Using Fixed-Point Data in Stateflow

Using Fixed-Point Data in Stateflow
In “What Is Fixed-Point Data?” on page 9-2 you learn the theory behind
fixed-point numbers. In this section you learn how Stateflow implements
these numbers in the following topics:

• “How Stateflow Defines Fixed-Point Data” on page 9-5 — Describes the
parameters that Stateflow uses to define fixed-point data.

• “Specifying Fixed-Point Data in Stateflow” on page 9-7 — Tells you where
and how to specify fixed-point data in Stateflow.

• “Fixed-Point Context-Sensitive Constants” on page 9-8 — Tells you how to
specify fixed-point constants that take their data type from the context in
which they are used.

• “Tips for Using Fixed-Point Data in Stateflow” on page 9-9 — Gives you
guidelines for using fixed-point data in Stateflow.

• “Overflow Detection for Fixed-Point Types” on page 9-11 — Tells you
how to detect errors that result from exceeding the numeric capacity of
fixed-point numbers.

• “Sharing Fixed-Point Data with Simulink” on page 9-12 — Tells you how to
specify fixed-point data in Simulink that it shares with Stateflow as input
from Simulink and output to Simulink data

How Stateflow Defines Fixed-Point Data
The preceding example in “What Is Fixed-Point Data?” on page 9-2 does not
answer the question of how the values for the slope, S, the quantized integer,
Q, and the bias, B, are implemented in Stateflow as integers. These values
are implemented through the following:

• Stateflow defines a fixed-point data’s type from values that you specify.

You specify values for S, B, and the base integer type for Q. The available
base types for Q are the unsigned integer types uint8, uint16, and
uint32, and the signed integer types int8, int16, and int32. For specific
instructions on how to enter fixed-point data, see “Specifying Fixed-Point
Data in Stateflow” on page 9-7.

9-5

9 Using Fixed-Point Data in Stateflow

Notice that if a fixed-point number has a slope S = 1 and a bias B = 0, it
is equivalent to its quantized integer Q, and behaves exactly as its base
integer type.

• Stateflow implements an integer variable for the Q value of each fixed-point
data in generated code.

This is the only part of a fixed-point number that varies in value. The
quantities S and B are constant and appear only as literal numbers or
expressions in generated code.

• The slope, S, is factored into an integer power of two, E, and a coefficient,
F, such that S = F*2E and 1 ≤ F< 2.

The powers of 2 are implemented as bit shifts, which are more efficient
than multiply instructions. Setting F = 1 avoids the computationally
expensive multiply instructions for values of F > 1. This is referred to as
binary-point-only scaling, which is implemented with bit shifts only, and is
highly recommended.

• Operations for fixed-point types are implemented with solutions for the
quantized integer as described in “Fixed-Point Operations” on page 9-3.

To generate efficient code, the fixed-point promotion rules choose values
for Sc and Bc that conveniently cancel out difficult terms in the solutions.
See “Addition (+) and Subtraction (-)” on page 9-23 and “Multiplication
(*) and Division (/)” on page 9-23.

Stateflow provides a special assignment operator (:=) and context-sensitive
constants to help you maintain as much precision as possible in your
fixed-point operations. See “Assignment (=, :=) Operations” on page 9-25
and “Fixed-Point Context-Sensitive Constants” on page 9-8.

• Any remaining numbers, such as the fractional slope, F, that cannot be
expressed as a pure integer or a power of 2, are converted into fixed-point
numbers.

These remaining numbers can be computationally expensive in
multiplication and division operations. That is why the practice of using
binary-point-only scaling in which F = 1 and B = 0 is recommended.

• During simulation, Stateflow detects when the result of a fixed-point
operation overflows the capacity of its fixed-point type. See “Overflow
Detection for Fixed-Point Types” on page 9-11.

9-6

Using Fixed-Point Data in Stateflow

Specifying Fixed-Point Data in Stateflow
You can specify fixed-point data in Stateflow as follows:

1 Add data to Stateflow as described in “Adding Data Using the Stateflow
Editor” on page 7-27.

2 Set the properties for the data in the data properties dialog as described
in “Fixed-Point Data Properties” on page 7-37.

For fixed-point data, set the following fields:

• In the Data type mode field, select Fixed point.

The Data properties dialog changes dynamically to display the fields
Signed, Word length and Scaling mode.

• In the Word length field, specify the size in bits of the word that will
hold the quantized integer. Word length can be any integer between 0
and 32.

• In the Scaling mode field, specify whether you want to scale fixed point
data to avoid overflow conditions and minimize quantization errors. If
you select binary point scaling, enter an integer value in the Fraction
length field to indicate the binary point location. A positive value moves
the binary point left of the rightmost bit (least significant bit) by that
amount; a negative value moves the binary point further right of the
rightmost bit by that amount, as in this example:

• To enter separate slope and bias values (see note below), select the Slope
and bias scaling option. The slope must be greater than zero.

9-7

9 Using Fixed-Point Data in Stateflow

Note It is recommended that you use binary-point-only scaling whenever
possible to simplify the implementation of fixed-point data in generated
code. Operations with fixed-point data using binary-point-only scaling
are performed with simple bit shifts and eliminate the expensive code
implementations required for separate slope and bias values.

You can also specify a fixed-point constant indirectly in action language
by using a fixed-point context-sensitive constant. See “Fixed-Point
Context-Sensitive Constants” on page 9-8.

Fixed-Point Context-Sensitive Constants
You can conveniently use fixed-point constants without using the data
properties dialog or Stateflow Explorer, by using context-sensitive constants.
Context-sensitive constants are constants that infer their types from the
context in which they occur. They are written like ordinary constants,
but have the suffix C or c. For example, the numbers 4.3C and 123.4c are
valid fixed-point context-sensitive constants you can use in action language
operations.

The following rules apply to context-sensitive constants:

• If any type in the context is a double then the context-sensitive constant is
cast to type double.

• In an addition or subtraction operation, the type of the context-sensitive
constant is the type of the other operand.

• In a multiplication or division operation with a fixed-point number, they
obtain the best possible precision for a fixed-point result.

In Simulink Fixed Point, this functionality is provided by the function
fixptbestexp.

• In a cast, the context is the type to which the constant is being cast.

• As an argument in a function call, the context is the type of the formal
argument. In an assignment, the context is the type of the left-hand
operand.

9-8

Using Fixed-Point Data in Stateflow

• Context-sensitive constants may not be used on the left-hand side of an
assignment.

• Both operands of a binary operation cannot be context-sensitive constants.

Note Both operands of a binary operation cannot be context-sensitive
constants.

While fixed-point context-sensitive constants can be used in context with
any types (for example, int32 or double), the primary motivation for using
them is with fixed-point numbers. The algorithm that computes the type to
assign to a fixed-point context-sensitive constant depends on the operator, the
types in the context, and the value of the constant. It provides a "natural"
type, providing maximum accuracy without overflow.

Tips for Using Fixed-Point Data in Stateflow
Once you specify fixed-point data (see “Specifying Fixed-Point Data in
Stateflow” on page 9-7), you can use it just as you would any data in Stateflow.
However, because of the limitations of fixed-point numbers, it is a good idea to
follow these guidelines when using them:

1 Develop and test your application using double- or single-precision
floating-point numbers.

Using double- or single-precision floating-point numbers does not limit
the range or precision of your computations. You need this while you are
building your application.

2 Once your application works well, start substituting fixed-point data for
double-precision data during the simulation phase, as follows:

a Set the integer word size for the simulation environment to the integer
size of the intended target environment.

Stateflow uses this integer size in generated code to select result types
for your fixed-point operations. See “Setting the Integer Word Size for a
Target” on page 9-21.

b Add the suffix ’C’ to literal numeric constants.

9-9

9 Using Fixed-Point Data in Stateflow

This suffix casts a literal numeric constant in the type of its context.
For example, if x is fixed-point data, the expression y = x/3.2C first
converts the numerical constant 3.2 to the fixed-point type of x and
then performs the division with a fixed-point result. See “Fixed-Point
Context-Sensitive Constants” on page 9-8 for more information.

Note If you do not use context-sensitive constants with fixed-point
types, noninteger numeric constants (for example, constants that have a
decimal point) can force fixed-point operations to produce floating-point
results.

3 When you simulate, use overflow detection.

See “Overflow Detection for Fixed-Point Types” on page 9-11 for instructions
on how to set overflow detection in simulation.

4 If you encounter overflow errors in fixed-point data, you can do one of the
following to add range to your data.

• Increase the number of bits in the overflowing fixed-point data.

For example, change the base type for Q from int16 to int32.

• Increase the range of your fixed-point data by increasing the power of
2 value, E.

For example, you might want to increase E from -2 to -1. This decreases
the available precision in your fixed-point data.

5 If you encounter problems with model behavior stemming from inadequate
precision in your fixed-point data, you can do one of the following to add
precision to your data:

• Increase the precision of your fixed-point data by decreasing the value
of the power of 2 binary point E.

For example, you might want to decrease E from -2 to -3. This decreases
the available range in your fixed-point data.

• If you decrease the value of E, you might also want to increase the
number of bits in the base data type for Q to prevent overflow.

9-10

Using Fixed-Point Data in Stateflow

For example, change the base type for Q from int16 to int32.

6 If you cannot avoid overflow for lack of precision, consider using the :=
assignment operator in place of the = operator for assigning the results of
multiplication and division operations.

You can use the := operator to increase the range and precision of the result
of fixed-point multiplication and division operations at the possible expense
of computational efficiency. See “Assignment Operator :=” on page 9-26.

Overflow Detection for Fixed-Point Types
Overflow occurs when the magnitude of a result assigned to a data exceeds
the numeric capacity of that data. You enable Stateflow to detect overflow of
integer and fixed-point operations during simulation with the following steps:

1 In the Stateflow diagram editor, from the Tools menu, select Open
Simulation Target.

The Stateflow Target Builder dialog opens with sfun entered in the
Target Name field.

2 Select Coder Options.

The Stateflow sfun Coder Options dialog opens.

3 Select both the Enable debugging/animation and Enable overflow
detection (for debugging) options.

For descriptions of these options, see “Configuring a Simulation Target
for Stateflow” on page 14-10.

4 Select OK to close the Stateflow sfun Coder Options dialog.

5 In the Stateflow Target Builder dialog, select Build to build the
simulation target.

6 In the Stateflow diagram editor toolbar, select Debug to open the
Debugging window.

7 In the Debugging window, select Data Range.

9-11

9 Using Fixed-Point Data in Stateflow

See “Setting Error Checking in the Debugging Window” on page 15-6 for
a description of this option.

8 In the Debugging window, select Start to begin simulating the model.

Simulation breaks execution when an overflow occurs.

Sharing Fixed-Point Data with Simulink
If you plan on sharing fixed-point data with Simulink, use one of the following
methods:

• Define the data that you input from Simulink or output to Simulink
identically in both Stateflow and Simulink.

This means that the values that you enter for the Stored Integer and
Scaling fields in the shared data’s properties dialog in Stateflow (see
“Specifying Fixed-Point Data in Stateflow” on page 9-7) must match similar
fields that you enter for fixed-point data in Simulink. See “Fixed-Point
"Bang-Bang Control" Example” on page 9-13 for an example of this method
of sharing input from Simulink data using a Gateway In block in Simulink.

For some Simulink blocks, you can specify the type of input or output data
directly. For example, you can set fixed-point output data directly in the
block parameters dialog of the Simulink Constant block when you select
Specify via dialog for the Output data type mode field (under Show
additional parameters).

• Define the data as Input from Simulink or Output to Simulink in the
data’s properties dialog in Stateflow and instruct the sending or receiving
block in Simulink to inherit its type from Stateflow.

Many blocks allow you to set their data types and scaling through
inheritance from the driving block, or through back propagation from the
next block. This can be a good way to set the data type of a Simulink block
to match the data type of the Stateflow port it connects to.

For example, you can set the Simulink Constant block to inherit its type
from the Stateflow Input to Simulink port that it supplies by selecting
Inherit via back propagation for the Output data type mode field in
its block parameters dialog (under Show additional parameters).

9-12

Fixed-Point "Bang-Bang Control" Example

Fixed-Point "Bang-Bang Control" Example
In this section you open and explore a Stateflow fixed-point demo model that
shows you how Stateflow fixed-point data is used in the following topics:

• “Opening the Fixed-Point "Bang-Bang Control" Example” on page 9-13

• “Exploring the Fixed-Point "Bang-Bang Control" Example” on page 9-14

Opening the Fixed-Point "Bang-Bang Control"
Example
Stateflow includes demo models with applications of fixed-point data. For
this example, load the sf_boiler demo model ("Bang-Bang control using
Temporal Logic") into Simulink with the following steps:

1 In the MATLAB window, in the Help menu, select Demos.

2 In the left pane of the resulting Help dialog, click the + sign in front of
Simulink to expand that node.

3 Continue by expanding the Stateflow node under the Simulink node.

4 Continue by expanding the Examples node under the Stateflow node.

5 Double-click the demos node under the Stateflow node.

6 Double-click the node marked Bang-Bang control using Temporal
Logic.

A Simulink window opens as shown.

9-13

9 Using Fixed-Point Data in Stateflow

Exploring the Fixed-Point "Bang-Bang Control"
Example
The Stateflow block performs almost all the logic of the bang-bang boiler
model with the exception of the Boiler Plant model subsystem block.

1 Double-click the Boiler Plant model subsystem block.

The Boiler Plant model block simulates the temperature reaction of the
boiler to periods of heating or cooling dictated by the Stateflow block.
Depending on the Boolean value coming from the Controller, a temperature
increment (+1 for heating, -0.1 for cooling) is added to the previous boiler
temperature. The resulting boiler temperature is sent to the digital
thermometer subsystem block.

2 Double-click the digital thermometer subsystem block.

9-14

Fixed-Point "Bang-Bang Control" Example

The digital thermometer subsystem produces an 8 bit fixed-point
representation of the input temperature with the blocks described in the
sections that follow.

temperature sensor Block
The temperature sensor block converts input boiler temperature (T) to an
intermediate analog voltage output Tvolts with a first-order polynomial that
results in the following output:

Tvolts = 05*T + 75

ADC Block
Double-click the ADC block to reveal the following contents:

The ADC subsystem digitizes the analog voltage from the temperature sensor
block by multiplying the analog voltage by 256/5, rounding it to its integer
floor, and limiting it to a maximum of 255 (the largest unsigned 8 bit integer
value). Using the value for the output Tvolts from the temperature sensor
block, the new digital coded temperature output by the ADC block, Tdigital,
is given by the following equation:

Tdigital = (265/5)*Tvolts = (256*0.05/5)*T+(256/5)*0.75

Gateway In Block
An examination of the Block Parameters dialog for the Gateway In block
shows that it informs the rest of the model that Tdigital is now a fixed-point
number with a slope value of 5/265/0.05 and an intercept value of -0.75/0.05.
The Stateflow block Bang-Bang Controller receives this output and interprets
it as a fixed-point number through the Stateflow data temp, which is scoped
as Input from Simulink and set as an unsigned 8 bit fixed-point data with
the same values for S and B set in the Gateway In block.

9-15

9 Using Fixed-Point Data in Stateflow

The values for S and B are determined from the general expression for a
fixed-point number, which is as follows:

V = S*Q + B

Therefore,

Q = (V - B)/S = (1/S)*V + (-1/S)*B

Since Tdigital is now a fixed-point number, it is now the quantized integer Q
of a fixed-point type. This means that Tdigital = Q of its fixed-point type and
results in the following identity:

(1/S)*V + (-1/S)*B = (256*0.05/5)*T + (256/5)*0.75

Since T is the real-world value for the environment temperature, the above
equation implies the following identifications:

V = T

and

1/S = (256*0.05)/5

S = 5/(265*0.05) = 0.390625

and

(-1/S)*B = (256/5)*0.75

B = -(256/5)*0.75*5/(256*0.05) = -0.75/0.05 = 15

By setting Tdigital to be a fixed-point data both as the output of the Gateway
In block in Simulink and the input of the Stateflow Bang-Bang Controller
block, Stateflow interprets and processes this data automatically in an 8 bit
environment with no need for any explicit conversions.

9-16

Operations with Fixed-Point Data

Operations with Fixed-Point Data
This section lists the supported operations for fixed-point data in Stateflow
and describes the data conversions required in order to perform these
operations in the following topics:

• “Supported Operations with Fixed-Point Operands” on page 9-17

• “Promotion Rules for Fixed-Point Operations” on page 9-19

• “Assignment (=, :=) Operations” on page 9-25

• “Fixed-Point Conversion Operations” on page 9-30

• “Autoscaling of Stateflow Fixed-Point” on page 9-31

Supported Operations with Fixed-Point Operands
Stateflow supports the operations listed in the topics that follow.

Binary Operations
Stateflow supports the following binary operations with the listed precedence:

Example Precedence Description

a * b 10 Multiplication

a / b 10 Division

a + b 9 Addition

a - b 9 Subtraction

a > b 7 Comparison, greater than

a < b 7 Comparison, less than

a >= b 7 Comparison, greater than or equal to

a <= b 7 Comparison, less than or equal to

a == b 6 Comparison, equality

a ~= b 6 Comparison, inequality

a != b 6 Comparison, inequality

a <> b 6 Comparison, inequality

9-17

9 Using Fixed-Point Data in Stateflow

Example Precedence Description

a & b 5 One of the following:

• Bitwise AND

Enabled when Enable C-bit operations is
selected in the chart properties dialog. See
“Specifying Chart Properties” on page 10-6.
Operands are cast to integers before the
operation is performed.

• Logical AND

Enabled when Enable C-bit operations is
cleared in chart properties dialog.

a | b 3 One of the following:

• Bitwise OR

Enabled when Enable C-bit operations
is selected in chart properties dialog. See
“Specifying Chart Properties” on page 10-6.
Operands are cast to integers before the
operation is performed.

• Logical OR

Enabled when Enable C-bit operations is
cleared in chart properties dialog.

a && b 2 Logical AND

a || b 1 Logical OR

Unary Operations and Actions
Stateflow supports the following unary operations and actions:

9-18

Operations with Fixed-Point Data

Example Description

~a Unary minus

!a Logical not

a++ Increment

a-- Decrement

Assignment Operations
Stateflow supports the following assignment operations:

Example Description

a = expression Simple assignment

a := expression See “Assignment Operator :=” on page 9-26.

a += expression Equivalent to a = a + expression

a -= expression Equivalent to a = a - expression

a *= expression Equivalent to a = a * expression

a /= expression Equivalent to a = a / expression

a |= expression Equivalent to a = a | expression (bit
operation). See operation a | b in “Binary
Operations” on page 9-17.

a &= expression Equivalent to a = a & expression (bit
operation). See operation a & b in “Binary
Operations” on page 9-17.

Promotion Rules for Fixed-Point Operations
Operations with at least one fixed-point operand require rules for selecting
the type of the intermediate result for that operation. For example, in
the action statement c = a + b, where a or b is a fixed-point number, an
intermediate result type for a + b must first be chosen before the result is
calculated and assigned to c.

The rules for selecting the numeric types used to hold the results of operations
with a fixed-point number are referred to as the fixed-point promotion rules.

9-19

9 Using Fixed-Point Data in Stateflow

The primary goal of these rules is to maintain good computational efficiency
with reasonable usability.

Note You can use the := assignment operator to override the fixed-point
promotion rules in the interest of obtaining greater accuracy. However, in
this case, greater accuracy might require more computational steps. See
“Assignment Operator :=” on page 9-26.

The following topics describe the process of selecting an intermediate result
type for all binary operations with at least one fixed-point operand:

Default Selection of the Number of Bits of the Result Type
A fixed-point number with S = 1 and B = 0 is treated as an integer. In
operations with integers, the C language promotes any integer input with
fewer bits than the type int to the type int and then performs the operation.

The type int is the integer word size for C on a given platform. Result word
size is increased to the integer word size because processors can perform
operations at this size efficiently.

Stateflow maintains consistency with the C language by using the following
default rule to assign the number of bits for the result type of an operation
with fixed-point numbers:

When both operands are fixed-point numbers, the number of bits in the result
type is the maximum number of bits in the input types or the number of bits
in the integer word size for the target machine, whichever is larger.

Note The preceding rule is a default rule for selecting the bit size of the result
for operations with fixed-point numbers. This rule is overruled for specific
operations as described in the sections that follow.

9-20

Operations with Fixed-Point Data

Setting the Integer Word Size for a Target. The preceding default rule
for selecting the bit size of the result for operations with fixed-point numbers
relies on the definition of the integer word size for your target. You can set
the integer word size for the targets that you build in Simulink with the
following procedure:

1 Right-click inside the root Simulink model and select Configuration
Parameters.

The Configuration Parameters dialog opens.

2 Select Hardware Implementation in the left navigation panel.

The right panel displays configuration parameters for embedded hardware
(simulation and code generation) and emulation hardware (code generation
only).

3 To set integer word size for embedded hardware, follow these steps:

• In the drop-down menu for the Device type field, select Custom.

• In the int field, enter a word size in bits.

4 To set integer word size for emulation hardware, follow these steps:

• If no configuration fields appear, click the button Configure current
execution hardware device and uncheck None.

• In the drop-down menu for the Device type field, select Custom.

• In the int field, enter a word size in bits.

5 Click OK to accept the changes.

When you build any target after making this change, Stateflow uses this
integer size in generated code to select result types for your fixed-point
operations.

Note It is recommended that you set all the available sizes because they
affect code generation, although they do not affect the implementation of the
fixed-point promotion rules in generated code.

9-21

9 Using Fixed-Point Data in Stateflow

Unary Promotions
Only the unary minus (-) operation requires a promotion of its result type.
The word size of the result is given by the default procedure for selecting the
bit size of the result type for an operation involving fixed-point data. See
“Default Selection of the Number of Bits of the Result Type” on page 9-20. The
bias, B, of the result type is the negative of the bias of the operand.

Binary Operation Promotion for Integer Operand with
Fixed-Point Operand
Integers as operands in binary operations with fixed-point numbers are
treated as fixed-point numbers of the same word size with slope, S, equal to
1, and a bias, B, equal to 0. The operation now becomes a binary operation
between two fixed-point operands. See “Binary Operation Promotion for Two
Fixed-Point Operands” on page 9-22.

Binary Operation Promotion for Double Operand with
Fixed-Point Operand
When one operand is of type double in a binary operation with a fixed-point
type, the result type is double. In this case, the fixed-point operand is cast to
type double, and the operation is performed.

Binary Operation Promotion for Single Operand with
Fixed-Point Operand
When one operand is of type single in a binary operation with a fixed-point
type, the result type is single. In this case, the fixed-point operand is cast to
type single, and the operation is performed.

Binary Operation Promotion for Two Fixed-Point Operands
Operations with both operands of fixed-point type produce an intermediate
result of fixed-point type. The resulting fixed-point type is chosen through
the application of a set of operator-specific rules. The procedure for producing
an intermediate result type from an operation with operands of different
fixed-point types is summarized in the following topics:

• “Setting the Integer Word Size for a Target” on page 9-21

• “Addition (+) and Subtraction (-)” on page 9-23

9-22

Operations with Fixed-Point Data

• “Multiplication (*) and Division (/)” on page 9-23

• “Relational Operations (>, <, >=, <=, ==, -=, !=, <>)” on page 9-23

• “Logical Operations (&, |, &&, ||)” on page 9-24

Addition (+) and Subtraction (-). The output type for addition and
subtraction is chosen so that the maximum positive range of either input can
be represented in the output while preserving maximum precision. The base
word type of the output follows the rule in “Default Selection of the Number
of Bits of the Result Type” on page 9-20. To simplify calculations and yield
efficient code, the biases of the two inputs are added for an addition operation
and subtracted for a subtraction operation.

Note Mixing signed and unsigned operands might yield unexpected results
and is not recommended.

Multiplication (*) and Division (/). The output type for multiplication and
division is chosen to yield the most efficient code implementation. Nonzero
biases are not supported for multiplication and division by Stateflow (see
note).

The slope for the result type of the product of the multiplication of two
fixed-point numbers is the product of the slopes of the operands. Similarly,
the slope of the result type of the quotient of the division of two fixed-point
numbers is the quotient of the slopes. The base word type is chosen to conform
to the rule in “Default Selection of the Number of Bits of the Result Type”
on page 9-20.

Note Because nonzero biases are computationally very expensive, they are
not supported for multiplication and division by Stateflow.

Relational Operations (>, <, >=, <=, ==, -=, !=, <>). Stateflow supports
the following relational (comparison) operations on all fixed-point types: >, <,
>=, <=, ==, -=, !=, <>. See “Supported Operations with Fixed-Point Operands”
on page 9-17 for an example and description of these operations. Stateflow
requires that both operands in a comparison have equal biases (see note).

9-23

9 Using Fixed-Point Data in Stateflow

Comparing fixed-point values of different types can yield unexpected
results because Stateflow must convert each operand to a common type for
comparison. Because of rounding or overflow errors during the conversion,
values that do not appear equal might be equal and values that appear to
be equal might not be equal.

Note To preserve precision and minimize unexpected results, Stateflow
requires both operands in a comparison operation to have equal biases.

For example, compare the following two unsigned 8 bit fixed-point numbers, a
and b, in an 8 bit target environment:

Fixed-Point Number a Fixed-Point Number b

Sa = 2-4 Sb = 2-2

Ba = 0 Bb = 0

Va = 43.8125 Vb = 43.75

Qa = 701 Qb = 175

By rule, the result type for comparison is 8 bit. Converting b, the least precise
operand, to the type of a, the most precise operand, could result in overflow.
Consequently, a is converted to the type of b. Because the bias values for both
operands are 0, the conversion is made as follows:

Sb (newQa) = SaQa

newQa = (SaSb) Qa = (2-4/2-2) 701 = 701/4 = 175

Although they represent different values, a and b are considered equal as
fixed-point numbers.

Logical Operations (&, |, &&, ||). If a is a fixed-point number used
in a logical operation, it is interpreted with the equivalent substitution a
!= 0.0C where 0.0C is an expression for zero in the fixed-point type of a
(see “Fixed-Point Context-Sensitive Constants” on page 9-8). For example,
if a is a fixed-point number in the logical operation a && b, this operation is
equivalent to the following:

9-24

Operations with Fixed-Point Data

(a != 0.0C) && b

The preceding operation is not a check to see whether the quantized integer
for a, Qa, is not 0. If the real-world value for a fixed-point number a is 0,
this implies that Va = SaQa + Ba = 0.0. Therefore, the expression a != 0, for
fixed-point number a, is actually equivalent to the following expression:

Qa ! = -Ba / Sa

For example, if a fixed-point number, a, has a slope of 2-2, and a bias of 5, the
test a != 0 is equivalent to the test if Qa ! = -20.

Assignment (=, :=) Operations
Stateflow supports the assignment operations LHS = RHS and LHS := RHS
between a left-hand side (LHS) and a right-hand side (RHS). These are
described in the following topics:

• “Assignment Operator =” on page 9-25.

• “Assignment Operator :=” on page 9-26

• “:= Multiplication Example” on page 9-26

• “:= Division Example” on page 9-28

• “:= Assignment and Context-Sensitive Constants” on page 9-29

Assignment Operator =
An assignment statement of the type LHS = RHS is equivalent to casting
the right-hand side to the type of the left-hand side. Stateflow supports any
assignment between fixed-point types and therefore, implicitly, any cast.

A cast converts the stored integer Q from its original fixed-point type while
preserving its value as accurately as possible using the online conversions
(see “Fixed-Point Conversion Operations” on page 9-30). Assignments are
most efficient when both types have the same bias, and slopes that are equal
or both powers of 2.

9-25

9 Using Fixed-Point Data in Stateflow

Assignment Operator :=
Ordinarily, Stateflow uses the fixed-point promotion rules to choose the
result type for an operation. Using the := assignment operator overrides this
behavior by using the type of the LHS as the result type of the RHS operation.

This type of assignment is particularly useful in retaining useful range and
precision in the result of a multiplication or division that ordinary assignment
might not retain. It is less useful with addition or subtraction but can avoid
overflow or the loss of memory to store a result even in these cases.

Use of the := assignment operator is governed by the following rules:

• The RHS can contain at most one binary operator.

• If the RHS contains anything other than a multiplication (*), division
(/), addition (+), or subtraction (-) operation, or a constant, then the :=
assignment behaves exactly like regular assignment (=).

• Constants on the RHS of an LHS := RHS assignment are converted to
the type of the left-hand side using offline conversion (see “Fixed-Point
Conversion Operations” on page 9-30). Ordinary assignment always casts
the RHS using online conversions.

For examples contrasting the LHS := RHS and the LHS = RHS assignment
operations, see the following:

• “:= Multiplication Example” on page 9-26

• “:= Division Example” on page 9-28

Caution Using the := assignment operator to produce a more accurate
result might generate code that is less efficient than the code generated
using the normal fixed-point promotion rules.

:= Multiplication Example
The following example contrasts the := and = assignment operators for
multiplication. Here, the := operator is used to avoid overflow in the results of
the multiplication c = a * b in which a and b are of two fixed-point operands.

9-26

Operations with Fixed-Point Data

The operands and result for this operation are 16 bit unsigned integers with
the following assignments:

Fixed-Point Number
a

Fixed-Point Number
b

Fixed-Point Number
c

Sa = 2-4 Sb = 2-4 Sc = 2-5

Ba = 0 Bb = 0 Bc = 0

Va = 20.1875 Vb = 15.3125 Vc = ?

Qa = 323 Qb = 245 Qc = ?

where S is the slope, B is the bias, V is the real-world value, and Q is the
quantized integer.

c = a*b. In this case, first calculate an intermediate result for a*b in the
fixed-point type given by the rules in the section “Fixed-Point Operations” on
page 9-3, and then cast that result into the type for c.

The intermediate value is calculated as follows:

Qiv = QaQb

Because the maximum value of a 16 bit unsigned integer is 216 - 1 = 65535,
the preceding result overflows its word size. An operation that overflows its
type produces an undefined result.

You can capture overflow errors like the preceding example during simulation
with the Debugger window. See “Overflow Detection for Fixed-Point Types”
on page 9-11.

c := a*b. In this case, calculate a*b directly in the type of c. Use the solution
for Qc given in “Fixed-Point Operations” on page 9-3 with the requirement of
zero bias, which is as follows:

Qc = ((SaSb/Sc)QaQb)

9-27

9 Using Fixed-Point Data in Stateflow

= 79135/8 = 9892 (rounded to floor)

No overflow occurs in this case, and the approximate real-world value is as
follows:

This value is very close to the actual real-world result of 309.121.

:= Division Example
The following example contrasts the := and = assignment operators for
division. The := operator is used to obtain more precise results for the division
of two fixed-point operands, b and c, in the statement c := a/b.

This example uses the following fixed-point numbers, where S is the slope, B
is the bias, V is the real-world value, and Q is the quantized integer:

Fixed-Point Number
a

Fixed-Point Number
b

Fixed-Point Number
c

Sa
-4 = 2 Sb

-3 = 2 Sc
-6 = 2

Ba = 0 Bb = 0 Bc = 0

Va = 2 Vb = 3 Vc = ?

Qa = 32 Qb = 24 Qc = ?

c = a/b. In this case, first calculate an intermediate result for a/b in the
fixed-point type given by the rules in the section “Fixed-Point Operations” on
page 9-3, and then cast that result into the type for c.

The intermediate value is calculated as follows:

Qiv = Qa/Qb

= 32/24 = 1

9-28

Operations with Fixed-Point Data

The intermediate value is then cast to the result type for c as follows:

SbQc = SivQiv

Qc = (Siv/Sc)Qiv

The slope of the intermediate value for a division operation is calculated as

Siv = Sa/Sb = 2-4-3/2 = 2-1

Substitution of this value into the preceding result yields the final result.

Qc = 2-1/2-6 = 25 = 32

In this case, the approximate real-world value is , which is
not a very good approximation of the actual result, .

c := a/b. In this case, calculate a/b directly in the type of c. Use the solution
for Qc given in “Fixed-Point Operations” on page 9-3 with the simplification of
zero bias, which is as follows:

Qc = (SaQa) / (Sc(SbQb))

In this case, the approximate real-world value = 42/64 = 0.6563, a much
better approximation to the precise result, 2/3 = 0.667.

:= Assignment and Context-Sensitive Constants
In a := assignment operation, the type of the left-hand side (LHS) determines
part of the context used for inferring the type of a right-hand side (RHS)
context-sensitive constant.

The following rules apply to RHS context-sensitive constants in assignments
with the := operator:

9-29

9 Using Fixed-Point Data in Stateflow

• If the LHS is a floating-point data (type double or single) , the RHS
context-sensitive constant becomes a floating-point constant.

• For addition and subtraction, the type of the LHS determines the type of
the context-sensitive constant on the RHS.

• For multiplication and division, the type of the context-sensitive constant
is chosen independent of the LHS.

Fixed-Point Conversion Operations
Stateflow converts real numbers into fixed-point data during data
initialization and as part of casting operations in the application. These
conversions compute a quantized integer, Q, from a real number input.
Stateflow uses offline conversions to initialize data and online conversions for
casting operations in the running application. The topics that follow describe
each conversion type and give examples of the results.

Offline Conversions for Initialized Data
Offline conversions are performed during code generation, and are designed to
maximize accuracy. They round the resulting quantized integer to its nearest
integer value. If the conversion overflows, the result saturates the value for Q.

Offline conversions are performed for the following operations:

• Initialization of data (both variables and constants) in the data dictionary

• Initialization of constants or variables from the MATLAB workspace

Online Conversions for Casting Operations
Online conversions are performed for casting operations that take place
during execution of the application. Designed to maximize computational
efficiency, they are faster and more efficient than offline conversions, but less
precise. Instead of rounding Q to its nearest integer, online conversions round
to the floor (with the possible exception of division, which might round to 0,
depending on the C compiler you have). If the conversion overflows the type
converted to, the result is undefined.

9-30

Operations with Fixed-Point Data

Offline and Online Conversion Examples
The following examples show the difference in the results of offline and online
conversions of real numbers to a fixed-point type defined by a 16 bit word size,
a slope (S) equal to 2-4, and a bias (B) equal to 0:

Offline
Conversion

Online
Conversion

V V/S Q Q

3.45 55.2 55 3.4375 55 3.4375

1.0375 16.6 17 1.0625 16 1

2.06 32.96 33 2.0625 32 2

In the preceding example,

• V is the real-world value represented as a fixed-point value.

• V/S is the floating-point computation for the quantized integer Q.

• Q is the rounded value of V/S.

• is the approximate real-world value resulting from Q for each conversion.

Autoscaling of Stateflow Fixed-Point
Simulink autoscales Stateflow fixed-point data with the Simulink autoscaling
tool. See “Automatic Scaling” in Simulink Fixed Point documentation for
instructions on autoscaling fixed-point data in Simulink.

You can prevent Stateflow fixed-point data from being autoscaled by selecting
the Lock output scaling against changes by the autoscaling tool check
box in the Data dialog for a fixed-point data. Selecting this option prevents
Simulink from replacing the current fixed-point type with a Simulink chosen
type in the autoscaling tool. See “Setting Data Properties in the Data Dialog”
on page 7-31 for a description of the properties for data.

9-31

9 Using Fixed-Point Data in Stateflow

9-32

10

Defining Interfaces to
Simulink and MATLAB

Each Stateflow chart is a block in a Simulink diagram that sits on top
of MATLAB. You can share data with MATLAB and Simulink and also
determine how and when Simulink executes your charts through Stateflow
interfaces with the following sections:

Overview of Stateflow Interfaces
(p. 10-3)

Each Stateflow block interfaces
to its Simulink model. Take an
overview look at Stateflow interfaces
to Simulink and MATLAB.

Specifying Chart Properties (p. 10-6) Tells you how to specify properties
for your chart. Part of the interface
for a chart to its Simulink model is
set when you specify the properties
for a chart.

Setting the Stateflow Block Update
Method (p. 10-15)

Implementing different Stateflow
interfaces in Simulink requires you
to set the update method for your
chart. This section describes each of
the settings for the update method
of your chart.

Implementing Simulink Update
Interfaces (p. 10-17)

This section summarizes all the
settings necessary for implementing
any possible interface in Simulink to
your Stateflow chart block.

10 Defining Interfaces to Simulink and MATLAB

Creating Chart Libraries (p. 10-29) Shows you how to save Stateflow
charts that you can place in the
Simulink block library for repeated
use in a Simulink model.

MATLAB Workspace Interfaces
(p. 10-30)

The MATLAB workspace is an area
of memory normally accessible from
the MATLAB command line. This
section describes ways that Stateflow
can access the data and functions of
the MATLAB workspace.

Interface to External Sources
(p. 10-31)

Describes the ways in which a
Stateflow chart can interface data
and events outside its Simulink
model.

10-2

Overview of Stateflow Interfaces

Overview of Stateflow Interfaces
Each Stateflow block interfaces to its Simulink model. Take an overview look
at Stateflow interfaces to Simulink and MATLAB with the following topics:

• “Stateflow Interfaces” on page 10-3 — Lists the interfaces that Stateflow
has to Simulink blocks, MATLAB data, and external code sources.

• “Typical Tasks to Define Stateflow Interfaces” on page 10-4 — Describes
the tasks used to define Stateflow interfaces.

• “Where to Find More Information on Events and Data” on page 10-4 —
Gives you references to further information on defining Stateflow interfaces
in the Stateflow documentation.

Stateflow Interfaces
Each Stateflow block interfaces to its Simulink model. Each Stateflow block
can interface to sources external to the Simulink model (data, events, custom
code). Events and data are the Stateflow objects that define the interface from
the Stateflow block’s point of view.

Events can be local to the Stateflow block or can be propagated to and from
Simulink and sources external to Simulink. Data can be local to the Stateflow
block or can be shared with and passed to the Simulink model and to sources
external to the Simulink model.

The Stateflow interfaces includes the following:

• Physical connections between Simulink blocks and the Stateflow block

• Event and data information exchanged between the Stateflow block and
external sources

• The properties of a Stateflow chart

• Graphical functions exported from a chart

See “Exporting Graphical Functions” on page 6-41 for more details.

• The MATLAB workspace

See “Using MATLAB Functions and Data in Actions” on page 8-29 for more
details.

10-3

10 Defining Interfaces to Simulink and MATLAB

• Definitions in external code sources

Typical Tasks to Define Stateflow Interfaces
Defining the interface for a Stateflow block in a Simulink model involves some
or all the tasks described in the following topics:

• Specify the update method for a Stateflow block in a Simulink model.

This task is described in “Setting the Stateflow Block Update Method” on
page 10-15.

• Define the input and output data and events that you need.

See the following topics for detailed information:

- “Defining Input Events” on page 7-13

- “Defining Output Events” on page 7-14

- “Sharing Input and Output Data with Simulink” on page 7-46

• Add and define any nonlocal data and events your Stateflow diagram
must interact with.

• Define relationships with any external sources.

See the topics “MATLAB Workspace Interfaces” on page 10-30 and
“Interface to External Sources” on page 10-31.

The preceding task list could be a typical sequence. You might find that
another sequence better complements your model development.

See “Implementing Simulink Update Interfaces” on page 10-17 for examples
of implemented interfaces to Simulink.

Where to Find More Information on Events and Data
The following references are relevant to defining the interface for a Stateflow
Chart block in Simulink:

• “Defining Input Events” on page 7-13

• “Defining Output Events” on page 7-14

• “Importing Events from Stateflow External Code” on page 7-22

10-4

Overview of Stateflow Interfaces

• “Exporting Events to Stateflow External Code” on page 7-21

• “Sharing Input and Output Data with Simulink” on page 7-46

• “Sharing Stateflow Data with External Modules” on page 7-60

• “Sharing Stateflow Data with External Modules” on page 7-60

10-5

10 Defining Interfaces to Simulink and MATLAB

Specifying Chart Properties
Part of the interface for a Stateflow block to its Simulink model is set when
you specify the properties for the chart of a Stateflow block. You can specify
properties for individual charts or for all charts in a model as described in
the following topics:

• “Setting Properties for Individual Charts” on page 10-6

• “Setting Properties for All Charts in the Model” on page 10-12

Setting Properties for Individual Charts
To specify properties for an individual Stateflow chart, follow these steps:

1 Double-click on a Stateflow block to open its diagram in the Stateflow
diagram editor.

2 Right-click an open area of the Stateflow diagram.

3 From the resultant context menu, select Properties.

The properties dialog for the chart appears, as shown:

10-6

Specifying Chart Properties

4 Enter properties for the chart based on the following descriptions:

10-7

10 Defining Interfaces to Simulink and MATLAB

Field Description

Name Stateflow diagram name; read-only; click
this hypertext link to bring the chart to the
foreground.

Machine Simulink subsystem name; read-only; click this
hypertext link to bring the Simulink subsystem
to the foreground.

State Machine Type Type of state machine to create. Choose from:
• Classic: Default state machine. Provides

full set of Stateflow semantics (see Chapter
3, “Stateflow Semantics”) .

• Mealy: State machine in which output is a
function of inputs and state.

• Moore: State machine in which output is a
function only of state.

Mealy and Moore charts use a subset of
Stateflow semantics. For more information, see
Chapter 5, “Building Mealy and Moore Charts
in Stateflow”.

Update method Method by which a simulation updates
(wakes up) a chart in Simulink. Choose from
Inherited, Discrete, or Continuous. For
more information, see “Setting the Stateflow
Block Update Method” on page 10-15.

Sample Time If Update method is Sampled, enter a sample
time.

10-8

Specifying Chart Properties

Field Description

Enable C-bit
operations

Select this box to recognize C bitwise operators
(~, &, |, ^, >>, and so on) in action language
statements and encode them as C bitwise
operations.

If this box is not selected, the following occurs:

• & and | are interpreted as logical operators.

• ^ is interpreted as the power operator
(for example, 2^3 = 8).

• The remaining expressions (>>, <<, and so
on) result in parse errors.

To specify this interpretation for all charts in
the model (machine), select the Apply to all
charts in machine now button.

User specified
state/transition
execution order

Select this box to switch to explicit ordering
of parallel states and transitions. In this
mode, you have complete control of the order
in which parallel states are executed and
transitions originating from a source are
tested for execution. For more information, see
“Execution Order for Parallel States” on page
3-27 and “Transition Testing Order” on page
3-11.

Export Chart Level
Graphical Functions

Exports graphical functions defined at the
chart’s root level. See “Exporting Graphical
Functions” on page 6-41 for more information.

10-9

10 Defining Interfaces to Simulink and MATLAB

Field Description

Use Strong Data
Typing with
Simulink I/O

If this option is selected, the Chart block for
this chart can accept input signals of any data
type supported by Simulink, provided that
the type of the input signal matches the type
of the corresponding chart input data item
(see “Sharing Input and Output Data with
Simulink” on page 7-46). If the types do not
match, a type mismatch error occurs.

If this item is cleared, the chart accepts and
outputs only signals of type double. In this
case, Stateflow converts Simulink input signals
to the data types of the corresponding chart
input data items. Similarly, Stateflow converts
chart output data (see “Sharing Input and
Output Data with Simulink” on page 7-46) to
type double if this option is not selected.

For fixed-point data, see the note following this
table.

Execute (enter)
Chart at
Initialization

Select this option if you want a chart’s state
configuration to be initialized at time 0 instead
of at the first occurrence of an input event (see
“Executing a Chart at Initialization” on page
3-7).

10-10

Specifying Chart Properties

Field Description

Initialize Outputs
Every Time Chart
Wakes Up

Interprets the initial value of outputs every
time a chart wakes up, not only at time 0.
When you set an initial value for an output data
object, the output will be reset to that value.

Outputs are reset whenever a chart is triggered,
whether by function call, edge trigger, or clock
tick.

Enable this option to

• Ensure all outputs are defined in every chart
execution

• Prevent latching of outputs (carrying over
values of outputs computed in previous
executions)

• Give all chart outputs a meaningful initial
value

Debugger
breakpoint: On
chart entry

Select to set a debugging breakpoint on entry
to this chart.

Editor: Locked Select to mark the Stateflow diagram as
read-only and prohibit any write operations.

Description Textual description/comment.

Document Link Enter a Web URL address or a general
MATLAB command. Examples are
www.mathworks.com, mailto:email_address,
and edit/spec/data/speed.txt.

Note For fixed-point data, the Use Strong Data Typing with Simulink
I/O option is always on. Therefore, if an input or output fixed-point data
in Stateflow does not match its counterpart data in Simulink, a mismatch
error results.

10-11

10 Defining Interfaces to Simulink and MATLAB

1 Select one of the following buttons:

• Apply to save the changes

• Cancel to cancel any changes since the last apply

• OK to save the changes and close the dialog box

• Help to display the Stateflow online help in an HTML browser window

Setting Properties for All Charts in the Model
You can set some properties for all charts in the model by setting properties
for the Stateflow machine for a model. The Stateflow machine for a model
represents all of the Stateflow blocks in a model.

To set properties for the Stateflow machine, do the following:

1 In the Chart properties dialog for a particular Stateflow chart, select the
Machine link at the top of the dialog.

The Machine properties dialog box appears.

10-12

Specifying Chart Properties

See “Setting Properties for Individual Charts” on page 10-6 for instructions
on accessing the Chart properties dialog for a Stateflow chart.

2 Enter information in the fields provided as described below.

Field Description

Simulink Model Name of the Simulink model that defines this
Stateflow machine, which is read-only. You
change the model name in Simulink when you
save the model under a chosen file name.

Creation Date Date on which this machine was created.

Creator Name of the person who created this Stateflow
machine.

Modified Time of the most recent modification of this
Stateflow machine.

10-13

10 Defining Interfaces to Simulink and MATLAB

Field Description

Version Version number of this Stateflow machine.

Enable C-like bit
operations

If you select this box, all new charts recognize
C bitwise operators (~, &, |, ^, >>, and so on) in
action language statements and encode these
operators as C bitwise operations.

You can enable or disable this option for
individual charts or all charts in the model in
an individual chart’s property dialog box. See
“Setting Properties for Individual Charts” on
page 10-6 for a detailed explanation of this
property.

Description Brief description of this Stateflow machine,
which is stored with the model that defines it.

Document Link MATLAB expression that, when evaluated,
displays documentation for this Stateflow
machine.

3 Click one of the following:

• Apply saves the changes.

• Cancel closes the dialog without making any changes.

• OK saves the changes and closes the dialog box.

• Help displays the Stateflow online help in an HTML browser window.

10-14

Setting the Stateflow Block Update Method

Setting the Stateflow Block Update Method
Stateflow blocks are Simulink subsystems. Simulink events wake up
subsystems for execution. To specify a wakeup method for a chart, set the
chart’s Update method property in the Chart dialog for the chart (see
“Specifying Chart Properties” on page 10-6). Choose from the following
wakeup methods:

• Inherited

This is the default update method. Specifying this method causes input
from the Simulink model to determine when the chart wakes up during a
simulation.

If you define input events for the chart, the Stateflow block is explicitly
triggered by a signal on its trigger port originating from a connected
Simulink block. This trigger input event can be set in the Stateflow
Explorer to occur in response to a Simulink signal that is Rising, Falling,
or Either (rising and falling), or in response to a Function Call. See
“Defining Input Events” on page 7-13.

If you do not define input events, the Stateflow block implicitly inherits
triggers from the Simulink model. These implicit events are the sample
times (discrete or continuous) of the Simulink signals providing inputs to
the chart. If you define data inputs (see “Sharing Input and Output Data
with Simulink” on page 7-46), the chart awakens at the rate of the fastest
data input. If you do not define any data input for the chart, the chart
wakes up as defined by its parent subsystem’s execution behavior.

• Discrete

Simulink awakens (samples) the Stateflow block at the rate you specify
as the block’s Sample Time property. An implicit event is generated by
Simulink at regular time intervals corresponding to the specified rate. The
sample time is in the same units as the Simulink simulation time. Note
that other blocks in the Simulink model can have different sample times.

10-15

10 Defining Interfaces to Simulink and MATLAB

• Continuous

Simulink wakes up (samples) the Stateflow block at each step in the
simulation, as well as at intermediate time points that can be requested
by the Simulink solver. This method is consistent with the continuous
method in Simulink.

See “Interface to External Sources” on page 10-31 for more information.

10-16

Implementing Simulink Update Interfaces

Implementing Simulink Update Interfaces
Stateflow diagrams execute when they are updated by the Simulink model
during simulation. A Stateflow diagram can be updated when it is triggered
or sampled by the Simulink model. This section summarizes all the settings
necessary for implementing any of the following possible Simulink updates
for a Stateflow chart block:

• “Defining a Triggered Stateflow Block” on page 10-17 — Provides an
example of a triggered Stateflow block in a Simulink model.

• “Defining a Sampled Stateflow Block” on page 10-18 — Provides an
example of a sampled Stateflow block in a Simulink model.

• “Defining an Inherited Stateflow Block” on page 10-19 — Provides an
example of a Stateflow block that inherits its sample time in a Simulink
model.

• “Defining a Continuous Stateflow Block” on page 10-20 — Provides an
example of a continuously sampled Stateflow block in a Simulink model.

• “Defining Function Call Output Events” on page 10-22 — Provides an
example of a Stateflow block that triggers a subsystem in a Simulink model
with a function call.

• “Defining Edge-Triggered Output Events” on page 10-26 — Provides an
example of a Stateflow block that triggers a subsystem in a Simulink
model with a signal edge.

Defining a Triggered Stateflow Block
These are essential conditions that define an edge-triggered Stateflow block:

• The chart Update method (set in the Chart Properties dialog box) is
set to Triggered or Inherited. (See “Specifying Chart Properties” on
page 10-6.)

• The chart has an Input from Simulink event defined and an edge-trigger
type specified. (See “Defining Input Events” on page 7-13.)

10-17

10 Defining Interfaces to Simulink and MATLAB

Triggered Stateflow Block Example
A Pulse Generator block connected to the trigger port of the Stateflow block is
an example of an edge-triggered Stateflow block.

The Input from Simulink event has a Rising Edge trigger type. If
more than one Input from Simulink event is defined, the sample times
are determined by Simulink to be consistent with various rates of all the
incoming signals. The outputs of a triggered Stateflow block are held after the
execution of the block.

Defining a Sampled Stateflow Block
There are two ways you can define a sampled Stateflow block. Setting the
chart Update method (set in the Chart Properties dialog box) to Sampled
and entering a Sample Time value define a sampled Stateflow block. (See
“Specifying Chart Properties” on page 10-6.)

Alternatively, you can add and define an Input from Simulink data object.
Data is added and defined using either the graphics editor Add menu or
the Explorer. (See “Sharing Input and Output Data with Simulink” on page
7-46.) The chart sample time is determined by Simulink to be consistent with
the rate of the incoming data signal.

The Sample Time (set in the Chart Properties dialog box) takes precedence
over the sample time of any Input from Simulink data.

10-18

Implementing Simulink Update Interfaces

Sampled Stateflow Block Example
You specify a discrete sample rate to have Simulink trigger a Stateflow block
that is not explicitly triggered via the trigger port. You can specify a Sample
Time in the Stateflow diagram’s Chart properties dialog box. The Stateflow
block is then called by Simulink at the defined, regular sample times.

The outputs of a sampled Stateflow block are held after the execution of the
block.

Defining an Inherited Stateflow Block
These are essential conditions that define an inherited trigger Stateflow block:

• The chart Update method (set in the Chart Properties dialog box) is
set to Triggered or Inherited. (See “Specifying Chart Properties” on
page 10-6)

• The chart has an Input from Simulink data object defined (added and
defined using either the graphics editor Add menu or the Explorer). (See
“Sharing Input and Output Data with Simulink” on page 7-46.) The chart
sample time is determined by Simulink to be consistent with the rate of the
incoming data signal.

Inherited Stateflow Block Example
Simulink can trigger a Stateflow block that is not explicitly triggered by a
trigger port or a specified discrete sample time. In this case, the Stateflow
block is called by Simulink at a sample time determined by Simulink.

10-19

10 Defining Interfaces to Simulink and MATLAB

In this example, more than one Input from Simulink data object is defined.
The sample times are determined by Simulink to be consistent with the rates
of both incoming signals.

The outputs of an inherited trigger Stateflow block are held after the
execution of the block.

Defining a Continuous Stateflow Block
To define a continuous Stateflow block, set the chart Update method in the
Chart dialog to Continuous. See “Specifying Chart Properties” on page 10-6.

Considerations in Choosing Continuous Update
The availability of intermediate data makes it possible for the solver to
back up in time to precisely locate a zero crossing. Refer to the Using
Simulink documentation for further information on zero crossings. Use of
the intermediate time point information can provide increased simulation
accuracy.

To support the Continuous update method, Stateflow keeps an extra copy of
all its data.

In most cases, including continuous-time simulations, the Inherited method
provides consistent results. The timing of state and output changes of the
Stateflow block is entirely consistent with that of the continuous plant model.

10-20

Implementing Simulink Update Interfaces

There are situations, such as the following, when changes within the Stateflow
block must be felt immediately by the plant and a Continuous update is
needed:

• Data output to Simulink that is a direct function of data input from
Simulink and then updated by the Stateflow diagram (state during actions
in particular)

• Models in which Stateflow states correspond to intrinsic physical states,
such as the onset of static friction or the polarity of a magnetic domain

These states are in contrast to states that are assigned, for example, as
modes of control strategy.

Continuous Stateflow Block Example
Simulink awakens (samples) the Stateflow block at each step in the
simulation, as well as at intermediate time points that might be requested by
the Simulink solver. This method is consistent with the continuous method
in Simulink.

In the following example (provided in the Examples/Stick-Slip Friction
Demonstration block), the chart Update method (set in the Chart
Properties dialog box) is set to Continuous.

10-21

10 Defining Interfaces to Simulink and MATLAB

Defining Function Call Output Events
This topic shows you how to trigger a function-call subsystem in Simulink
with a Function Call output event in a Stateflow diagram. It assumes that you
already have in place a programmed function-call subsystem and a Stateflow
block in the Simulink model. Use the following steps to connect the Stateflow
block to the function-call subsystem and trigger it during simulation.

1 In the Stateflow diagram editor, from the Add menu, select Event.

A pop-up menu of different event scopes appears.

2 From the pop-up menu select Output to Simulink.

The Event dialog appears with a default name of event and a Scope of
Output to Simulink.

10-22

Implementing Simulink Update Interfaces

3 In the Event dialog, in the Trigger field, select Function Call.

4 Name the event appropriately and select OK to close the dialog.

An output port with the name of the event you add appears on the right
side of the Stateflow block.

5 From the Simulink library browser Ports & Subsystems library, place a
function-call subsystem in the Simulink model.

You can also create a function-call subsystem by adding a subsystem to the
model and adding a Trigger port to the subsystem. In the Triggerport
parameters dialog for the Trigger block, set the Trigger type field to
function-call.

6 Connect the output port on the Stateflow block for the Function Call
trigger Output to Simulink event you add to the function-call trigger
input port of the subsystem.

You should avoid placing any other blocks in the connection lines between
the Stateflow block and the function-call subsystem for Stateflow blocks
that have feedback loops from a block triggered by a function call event.

Note You cannot connect a function-call output event from Stateflow to a
Simulink Demux block in order to trigger multiple subsystems.

7 To execute the function-call subsystem, include an event broadcast of the
function call output event in the actions of the Stateflow diagram as shown
in the following example.

10-23

10 Defining Interfaces to Simulink and MATLAB

Function Call Output Events Example

The control Stateflow block has one data input called pulse and two function
call output events called filter1 and filter2. A pulse generator provides
input data to the control block. Each function call output event is attached to
a subsystem in the Simulink model that is set to trigger by a function call.

Each transition in the control chart has a condition based on the size of the
input pulse. When taken, each transition broadcasts a function call output
event that determines whether to make a function call to filter1 or filter2.
If the Output to Simulink function call event filter1 is broadcast, the band
pass filter1 subsystem executes. If the Output to Simulink function call
event filter2 is broadcast, the band pass filter2 subsystem executes.
When either of these subsystems is finished executing, control is returned
to the control Stateflow block for the next execution step. In this way, the
Stateflow block controls the execution of band pass filter1 and band pass
filter2.

10-24

Implementing Simulink Update Interfaces

Function Call Semantics Example
In this example the transition from state A to state B (in the Stateflow
diagram) has a transition action that specifies the broadcast of event1.
event1 is defined in Stateflow to be an Output to Simulink with a Function
Call trigger type. The Stateflow block output port for event1 is connected
to the trigger port of the band pass filter1 Simulink block. The band pass
filter1 block has its Trigger type field set to Function Call.

This sequence is followed when state A is active and the transition from state
A to state B is valid and is taken:

1 State A exit actions execute and complete.

2 State A is marked inactive.

3 The transition action is executed and completed.

10-25

10 Defining Interfaces to Simulink and MATLAB

In this case the transition action is a broadcast of event1. Because
event1 is an event output to Simulink with a function call trigger, the
band pass filter1 block executes and completes, and then returns to
the next statement in the execution sequence. The value of y is fed back
to the Stateflow diagram.

4 State B is marked active.

5 State B entry actions execute and complete (x = x + y). The value of y is
the updated value from the band pass filter1 block.

6 The Stateflow diagram goes back to sleep, waiting to be awakened by
another event.

Defining Edge-Triggered Output Events
Simulink controls the execution of edge-triggered subsystems with output
events. These are essential conditions that define this use of triggered output
events:

• The chart has an Output to Simulink event with the trigger type Either
Edge. See “Defining Output Events” on page 7-14.

• The Simulink block connected to the edge-triggered Output to Simulink
event has its own trigger type set to the equivalent edge triggering.

Edge-Triggered Semantics Example
In this example the transition from state A to state B (in the Stateflow
diagram) has a transition action that specifies the broadcast of event1.
event1 is defined in Stateflow to be an Output to Simulink with an Either
edge trigger type. The Stateflow block output port for event1 is connected to
the trigger port of the band pass filter1 Simulink block. The band pass
filter1 block has its Trigger type field set to Either edge.

10-26

Implementing Simulink Update Interfaces

This sequence is followed when state A is active and the transition from state
A to state B is valid and is taken:

1 State A exit actions execute and complete.

2 State A is marked inactive.

3 The transition action, an edge-triggered Output to Simulink event
broadcast, is registered (but not executed). Simulink is controlling the
execution and execution control does not shift until the Stateflow block
completes.

4 State B is marked active.

10-27

10 Defining Interfaces to Simulink and MATLAB

5 State B entry actions execute and complete (x = x++).

6 The Stateflow diagram goes back to sleep, waiting to be awakened by
another event.

7 The band pass filter1 block is triggered, executes, and completes.

10-28

Creating Chart Libraries

Creating Chart Libraries
A Stateflow chart library is a Simulink block library that contains Stateflow
Chart blocks (and, optionally, other types of Simulink blocks as well). Just
as Simulink libraries serve as repositories of commonly used blocks, chart
libraries serve as repositories of commonly used charts.

You create a chart library in the same way you create other types of Simulink
libraries. First, create an empty chart library by selecting Library from
the New submenu of Simulink’s File menu. Then create or copy Chart
blocks into the library just as you would create or copy Chart blocks into a
Stateflow model.

You use chart libraries in the same way you use other types of Simulink
libraries. To include a chart from a library in your Stateflow model, copy or
drag the chart from the library to the model. Simulink creates a link from
the instance in your model to the instance in the library. This allows you to
update all instances of the chart simply by updating the library instance.

Note Events parented by a library Stateflow machine are invalid. Stateflow
allows you to define such events but flags them as errors when parsing a
model.

10-29

10 Defining Interfaces to Simulink and MATLAB

MATLAB Workspace Interfaces
The MATLAB workspace is an area of memory normally accessible from the
MATLAB command line. It maintains a set of variables built up during a
MATLAB session.

Examining the MATLAB Workspace in MATLAB
Two commands, who and whos, show the current contents of the workspace.
The who command gives a short list, while whos also gives size and storage
information.

To delete all the existing variables from the workspace, enter clear at the
MATLAB command line.

See the MATLAB online or printed documentation for more information.

Interfacing the MATLAB Workspace in Stateflow
Stateflow charts have the following access to the MATLAB workspace:

• You can access MATLAB data or MATLAB functions in Stateflow action
language with the ml namespace operator or the ml function.

See “Using MATLAB Functions and Data in Actions” on page 8-29 for more
information.

• You can use the MATLAB workspace to initialize chart data at the
beginning of a simulation.

See “Entering Expressions and Parameters for Data Properties” on page
7-42.

• You can save chart data to the workspace at the end of a simulation.

See “Save final value to base workspace” on page 7-40 for more information.

10-30

Interface to External Sources

Interface to External Sources
Any source of data, events, or code that is outside a Stateflow diagram, its
Stateflow machine, or its Simulink model, is considered external to that
Stateflow diagram. Stateflow can interface data and events from external
sources to your Stateflow chart, as described in the following topics:

• “Exported Events” on page 10-31 — Describes events that a Stateflow chart
exports to locations outside itself.

• “Imported Events” on page 10-33 — Describes events that a Stateflow chart
imports from locations outside itself.

• “Exported Data” on page 10-35 — Describes data that a Stateflow chart
exports to locations outside itself.

• “Imported Data” on page 10-36 — Describes data that a Stateflow chart
imports from locations outside itself.

See Chapter 7, “Defining Events and Data” for information on defining events
and data.

You can include external source code in the Target Options section of the
Target Builder dialog box. (See “Integrating Custom Code with Stateflow
Targets” on page 14-27.)

Exported Events
You might want an external source (outside the Stateflow diagram, its
Stateflow machine, and its Simulink model) to be able to broadcast an event.
By defining an event’s scope to be Exported, you make that event available
to external sources for broadcast purposes. Exported events must be parented
by the Stateflow machine, because the machine has the highest level in the
Stateflow hierarchy and can interface to external sources. The Stateflow
machine also retains the ability to broadcast the exported event. Exporting
the event does not imply anything about what the external source does with
the information. It is the responsibility of the external source to include the
Exported event (in the manner appropriate to the source) to make use of the
right to broadcast the event.

10-31

10 Defining Interfaces to Simulink and MATLAB

If the external source for the event is another Stateflow machine, then
that machine must define the event as an Exported event and the other
machine must define the same event as Imported. Stateflow generates the
appropriate export and import event code for both machines.

Consider a real-world example to clarify when to define an Exported event.
You have purchased a communications pager. There are a few people you want
to be able to page you, so you give those people your personal pager number.
These people now know your pager number and can call that number and page
you at any time. You do not usually page yourself, but you can do so. Telling
someone the pager number does not mean they have heard and recorded the
number. It is the other person’s responsibility to retain the number.

Exported Event Example
This example shows the format required in the external code source (custom
code) to take advantage of an Exported event generated in Stateflow.

10-32

Interface to External Sources

Imported Events
You might want to broadcast an event that is defined externally (outside
the Stateflow diagram, its Stateflow machine, and its Simulink model). By
defining an event’s scope to be Imported, you can broadcast the event
anywhere within the hierarchy of that machine (including any offspring of
the machine).

10-33

10 Defining Interfaces to Simulink and MATLAB

An imported event’s parent is external. However, the event needs an adoptive
parent to resolve symbols for code generation. An imported event’s adoptive
parent must be the Stateflow machine, because the machine has the highest
level in the Stateflow hierarchy and can interface to external sources. It is the
responsibility of the external source to make the imported event available (in
the manner appropriate to the source).

If the external source is another Stateflow machine, the source machine must
define the same event as Exported. Stateflow generates the appropriate
import and export event code for both machines.

The preceding pager example for exported events can clarify the use of
imported events. For example, someone buys a pager and tells you that you
might want to use this number to page them in the future and they give you
the pager number to record. You can then use that number to page that
person.

Imported Event Example
The following example shows the format required in an external code source
(custom code) to generate an Imported event in Stateflow.

10-34

Interface to External Sources

Exported Data
You might want an external source (outside the Stateflow diagram, its
Stateflow machine, and its Simulink model) to be able to access a data object.
By defining a data object’s scope as Exported, you make it accessible to
external sources. Exported data must be parented by the Stateflow machine,
because the machine has the highest level in the Stateflow hierarchy and
can interface to external sources. The Stateflow machine also retains the
ability to access the exported data object. Exporting the data object does not
imply anything about what the external source does with the data. It is the
responsibility of the external source to include the exported data object (in the
manner appropriate to the source) to make use of the right to access the data.

10-35

10 Defining Interfaces to Simulink and MATLAB

If the external source is another Stateflow machine, then that machine
defines an exported data object and the other machine defines the same data
object as imported. Stateflow generates the appropriate export and import
data code for both machines.

Exported Data Example
The following example shows the format required in the external code source
(custom code) to import a Stateflow exported data object:

Imported Data
Similarly, you might want to access a data object that is externally defined
outside the Stateflow diagram, its Stateflow machine, and its Simulink

10-36

Interface to External Sources

model. If you define the data’s scope as Imported, the data can be accessed
anywhere within the hierarchy of the Stateflow machine (including any
offspring of the machine). An imported data object’s parent is external.
However, the data object needs an adoptive parent to resolve symbols for
code generation. An imported data object’s adoptive parent must be the
Stateflow machine, because the machine has the highest level in the Stateflow
hierarchy and can interface to external sources. It is the responsibility of the
external source to make the imported data object available (in the manner
appropriate to the source).

If the external source for the data is another Stateflow machine, that machine
must define the same data object as Exported. Stateflow generates the
appropriate import and export data code for both machines.

Imported Data Example
This example shows the format required to retrieve imported data from an
external code source (custom code).

10-37

10 Defining Interfaces to Simulink and MATLAB

10-38

11

Working with Structures
and Bus Signals in
Stateflow

Stateflow provides a structure data type that you can use to interface
Stateflow charts and truth tables with Simulink bus signals, and to define
local and temporary structures.

About Stateflow Structures (p. 11-2) Describes the bus object structure

Defining Structures in Stateflow
(p. 11-7)

Explains how to define input, output,
local, and temporary structures

Structure Operations (p. 11-17) Describes the operations you can
perform with Stateflow structures

Integrating Custom Structures in
Stateflow (p. 11-22)

Explains how to define custom
Stateflow structures in C code

Debugging Structures in Stateflow
(p. 11-26)

Explains how to use the Stateflow
debugger to verify structure values

11 Working with Structures and Bus Signals in Stateflow

About Stateflow Structures
The Stateflow structure is a data type that you define as a Simulink.Bus
object. This section describes the elements and uses of the Stateflow structure.

• “Elements of Stateflow Structures” on page 11-2

• “What You Can Do with Structures” on page 11-2

• “Example of Stateflow Structures” on page 11-3

Elements of Stateflow Structures
The elements of the Stateflow structure data type are called fields. They can
be any combination of

• Individual signals of mixed data types

• Composite signals, such as muxed signals or buses

To be consistent with Simulink, there are restrictions on the use of Stateflow
structures with arrays:

• Stateflow structures cannot contain arrays of buses.

• Stateflow data array objects cannot contain structures.

What You Can Do with Structures
With the Stateflow structure data type, you can create

• Inputs and outputs for accessing Simulink bus signals from Stateflow
charts, Truth Table blocks, and Embedded MATLAB function blocks (see
“Defining Structure Inputs and Outputs” on page 11-7)

• Local structure data in Stateflow charts, truth tables, graphical functions,
Embedded MATLAB functions, and boxes (see “Defining Local Structures”
on page 11-12)

• Temporary structure data in Stateflow graphical functions, truth tables,
and Embedded MATLAB functions (see “Defining Temporary Structures”
on page 11-14)

11-2

About Stateflow Structures

Example of Stateflow Structures
The model sfbus_demo provides examples of structures in a Stateflow chart
and graphical function, as follows:

In this model, the Stateflow chart receives a bus input signal using the
structure inbus at input port 1 and outputs a bus signal from the structure
outbus at output port 1. The input signal comes from the Simulink Bus
Creator block COUNTERBUSCreator, which bundles signals from two other Bus
Creator blocks: SIGNALBUSCreator and LIMITBUSCreator. The structure
outbus connects to a Simulink Bus Selector block BUSSelector. The
Stateflow chart also contains a local structure counterbus_struct and a

11-3

11 Working with Structures and Bus Signals in Stateflow

graphical function get_input_signal that contains an input structure u
and output structure y.

Structure Definitions in sfbus_demo Stateflow Chart
Here are the definitions of the structures in the Stateflow chart of the
sfbus_demo model, as they appear in the Model Explorer:

Note The local structure counterbus_struct is defined using the type
operator in an expression, as described in “Defining Structure Types with
Expressions” on page 11-15.

Structure Definitions in sfbus_demo Stateflow Graphical
Function
Here are the definitions of the structures in the graphical function
get_input_signal as they appear in the Model Explorer:

11-4

About Stateflow Structures

Simulink Bus Objects Define Stateflow Structures
Each Stateflow structure must be defined by a Simulink.Bus object in the
base workspace. This means that the structure shares the same properties as
the bus object, including number, name, and type of fields. For example, the
sfbus_demo model defines the following bus objects in the base workspace:

You can find the bus object that defines a Stateflow structure by looking in
the Data Type and Compiled Type columns in the Contents pane of the Model
Explorer. For example, the structures inbus, outbus, and counterbus_struct

11-5

11 Working with Structures and Bus Signals in Stateflow

are all defined in sfbus_demo by the same Simulink bus object, COUNTERBUS,
as shown in this view of the Model Explorer:

Based on these definitions, inbus, outbus, and counterbus_struct have
the same properties as COUNTERBUS. For example, these Stateflow structures
in sfbus_demo reference their fields by the same names as the elements in
COUNTERBUS, as follows:

Structure First Field Second Field

inbus inbus.inputsignal inbus.limits

outbus outbus.inputsignal outbus.limits

counterbus_struct counterbus_struct.inputsignal counterbus_struct.limits

To learn how to define structures in Stateflow using Simulink.Bus objects,
see “Defining Structures in Stateflow” on page 11-7.

If you define a custom structure in C for your Stateflow chart, you must make
sure that the structure’s typedef declaration in your header file matches the
properties of the Simulink.Bus object that defines the structure, as described
in “Integrating Custom Structures in Stateflow” on page 11-22.

11-6

Defining Structures in Stateflow

Defining Structures in Stateflow
This section explains how to define structures in Stateflow.

• “Rules for Defining Structure Data Types in Stateflow” on page 11-7

• “Defining Structure Inputs and Outputs” on page 11-7

• “Defining Local Structures” on page 11-12

• “Defining Temporary Structures” on page 11-14

• “Defining Structure Types with Expressions” on page 11-15

Rules for Defining Structure Data Types in Stateflow
Follow these rules when defining structures in Stateflow:

• You must define each structure used in Stateflow as a Simulink.Bus object
in the base workspace.

• You cannot define structures for Stateflow machines.

Note The Stateflow machine is the object that contains all other Stateflow
objects in a Simulink model (see “Stateflow Hierarchy of Objects” on page
1-21).

• Stateflow structures cannot have scopes defined as Constant, Parameter, or
Data Store Memory.

Defining Structure Inputs and Outputs
This section describes how to define structure inputs and outputs in Stateflow
that you can connect to Simulink bus signals.

• “Interfacing Stateflow Structures with Simulink Bus Signals” on page 11-8

• “Working with Virtual and Nonvirtual Buses” on page 11-12

11-7

11 Working with Structures and Bus Signals in Stateflow

Interfacing Stateflow Structures with Simulink Bus Signals
Stateflow structure inputs can be driven by any Simulink bus signal that has
matching properties. Similarly, Stateflow can output structures to Simulink
blocks that accept bus signals. To create inputs and outputs in Stateflow,
follow these steps:

1 Create a Simulink bus object in the base workspace to define the structure
type for your Stateflow chart.

For information about how to create Simulink bus objects, see
Simulink.Bus in the Simulink Reference documentation.

2 Open the Model Explorer and perform these tasks:

a Add a data object, as described in “Using the Model Explorer to Create
Data Objects” in the Simulink User’s Guide.

b Double-click the data object to open its properties dialog box and enter
the following information in the General tab fields:

• Name — Name of the structure data.

• Scope — Select Input or Output.

• Data type mode — Select Inherited, Bus Object, or Expression
according to these guidelines:

11-8

Defining Structures in Stateflow

Data Type
Mode

Works with
Scope

Requirements

Inherited Input If the data type mode is Inherited:

– There must be a Simulink bus signal in your model that
connects to the Stateflow structure input.

– The Simulink bus signal must be a nonvirtual bus (see “Working
with Virtual and Nonvirtual Buses” on page 11-12).

– You must specify a Simulink.Bus object in the base workspace
with the same properties as the bus signal in your model
that connects to the Stateflow structure input. The following
properties must match:

Number, name, and type of inputs

Dimension

Sample Time

Complexity

Sampling Mode

– If your input signal comes from a Bus Creator block, you must
check the option Specify properties via bus object in the
Bus Creator properties dialog box. When you enable this option,
Simulink verifies that the properties of the Simulink.Bus object
in the base workspace match the properties of the Simulink
bus signal.

11-9

11 Working with Structures and Bus Signals in Stateflow

Data Type
Mode

Works with
Scope

Requirements

Bus Object Input or
Output

If the data type mode is Bus Object, you must specify a
Simulink.Bus object in the base workspace to define the Stateflow
structure input or output.

Note You are not required to specify a bus signal in your
Simulink model that connects to the Stateflow structure input
or output. However, if you do specify a bus signal, its properties
must match the Simulink.Bus object that defines the Stateflow
structure input or output.

Expression Input or
Output

If the data type mode is Expression, you must derive the data
type from an existing structure in your Stateflow chart.

• Additional fields — Depending on the data type mode that you select,
you may need to enter information in additional fields in the Data
properties dialog box, as follows:

11-10

Defining Structures in Stateflow

Field When it
Appears

What to Specify

Bus object When you select
Bus Object as
the data type
mode

Enter the name of the
Simulink.Bus object in the
base workspace that defines
the Stateflow structure.

Data type When you select
Expression as
the data type
mode

Enter an expression according
to these guidelines:

– For structure inputs, you
can use the Stateflowtype
operator to assign the
type of your structure
based on the type of
another structure defined
in the Stateflow chart,
as described in “Defining
Structure Types with
Expressions” on page 11-15

Note You cannot use the
type operator for structure
outputs (structures of scope
Output)

– For structure inputs
or outputs, you can
enter the name of the
Simulink.Bus object in
the base workspace that
defines the Stateflow
structure.

c Click Apply.

11-11

11 Working with Structures and Bus Signals in Stateflow

Working with Virtual and Nonvirtual Buses
Simulink supports virtual and nonvirtual buses. Virtual buses read their
inputs from noncontiguous memory, while nonvirtual buses read their
inputs from data structures stored in contiguous memory (see “Virtual and
Nonvirtual Buses” in the Simulink User’s Guide).

Stateflow supports nonvirtual buses only. When Simulink builds models that
contain Stateflow structure inputs and outputs, it uses a hidden converter
block to convert bus signals for use with Stateflow, as follows:

• Converts incoming virtual bus signals to nonvirtual buses for Stateflow
structure inputs

• Converts outgoing nonvirtual bus signals from Stateflow to virtual bus
signals, if necessary

Even though this conversion process allows Stateflow to accept virtual and
nonvirtual buses as input, Stateflow structures cannot inherit properties from
virtual bus input signals. If the input to Stateflow is a virtual bus, you must
set the data type mode of the Stateflow bus input to Bus Object, as described
in “Interfacing Stateflow Structures with Simulink Bus Signals” on page 11-8.

Defining Local Structures
To define local structures in Stateflow, follow these steps:

1 Create a Simulink bus object in the base workspace to define the structure
type for your Stateflow chart.

For information about how to create Simulink bus objects, see
Simulink.Bus in the Simulink Reference.

2 Open the Model Explorer and perform these tasks:

a Add a data object, as described in “Using the Model Explorer to Create
Data Objects” in the Simulink User’s Guide.

b Double-click the data object to open its properties dialog box and enter
the following information in the General tab fields:

11-12

Defining Structures in Stateflow

Field What to Specify

Name Enter a name for the structure data.

Scope Select Local.

Data type
mode

Select Bus Object or Expression.

c Additional fields — Depending on the data type mode that you select,
you may need to enter information in additional fields in the Data
properties dialog box, as follows:

Field When it Appears What to Specify

Bus object When you select Bus
Object as the data
type mode

Enter the name of the
Simulink.Bus object in
the base workspace that
defines the Stateflow
structure.

Data type When you select
Expression as the
data type mode

Enter any of the following
expressions:

• Use the Stateflowtype
operator to assign
the type of your
structure based on
the type of another
structure defined in
the Stateflow chart, as
described in “Defining
Structure Types with
Expressions” on page
11-15

• Enter the name of the
Simulink.Bus object in
the base workspace that
defines the Stateflow
structure.

d Click Apply.

11-13

11 Working with Structures and Bus Signals in Stateflow

Defining Temporary Structures
You can define temporary structures in Stateflow truth tables, graphical
functions, and Embedded MATLAB functions. Follow these steps:

1 Create a Simulink bus object in the base workspace to define the structure
type for your Stateflow chart.

For information about how to create Simulink bus objects, see
Simulink.Bus in the Simulink Reference.

2 Open the Model Explorer and perform these tasks:

a Add a data object, as described in “Using the Model Explorer to Create
Data Objects” in the Simulink User’s Guide.

b Double-click the data object to open its properties dialog box and enter
the following information in the General tab fields:

Field What to Specify

Name Enter a name for the structure data.

Scope Select Temporary.

Data type
mode

Select Bus Object or Expression.

c Additional fields — Depending on the data type mode that you select,
you may need to enter information in additional fields in the Data
properties dialog box, as follows:

11-14

Defining Structures in Stateflow

Field When it Appears What to Specify

Bus object When you select Bus
Object as the data
type mode

Enter the name of the
Simulink.Bus object in
the base workspace that
defines the Stateflow
structure.

Data type When you select
Expression as the
data type mode

Enter any of the following
expressions:

• Use the Stateflowtype
operator to assign
the type of your
structure based on
the type of another
structure defined in
the Stateflow chart, as
described in “Defining
Structure Types with
Expressions” on page
11-15

• Enter the name of the
Simulink.Bus object in
the base workspace that
defines the Stateflow
structure.

d Click Apply.

Defining Structure Types with Expressions
You can define structure types with expressions that call the Stateflow type
operator. This operator assigns the type of your structure based on the type
of another structure defined in the Stateflow chart. For example, the model
sfbus_demo contains a local structure whose type is defined using a type
operator expression, as follows:

11-15

11 Working with Structures and Bus Signals in Stateflow

In this case, the structure counterbus_struct derives its type from
structure inbus, which is defined by the Simulink.Bus object COUNTERBUS.
Therefore, the structure counterbus_struct is also defined by the bus object
COUNTERBUS.

To learn how to use the Stateflow type operator, see “Deriving Data Types
from Previously Defined Data” on page 7-68.

11-16

Structure Operations

Structure Operations
You can perform the following operations with Stateflow structures:

• “Indexing Sub-Structures and Fields” on page 11-17

• “Assigning Values” on page 11-19

• “Getting Addresses” on page 11-20

Indexing Sub-Structures and Fields
You index substructures and fields of Stateflow structures by using dot
notation. With dot notation, the first text string identifies the parent object,
and subsequent text strings identify the children along a hierarchical path.
When the parent is a structure, its children are individual fields or fields that
contain other structures (also called substructures). By default, the names
of the fields of a Stateflow structure match the names of the elements of the
Simulink.Bus object that defines the structure.

For example, consider the following model:

In this example, the following structures are defined in the Stateflow chart:

11-17

11 Working with Structures and Bus Signals in Stateflow

Name of Structure Scope Defined By
Simulink.Bus Object

in Input BusObject

out Output BusObject

subbus Local SubBus

The Simulink.Bus objects that define these structures have the following
elements:

By default, Stateflow structures in and out have the same fields —sb, a,
b, and c — as the elements of Simulink.Bus object BusObject. Similarly,
the Stateflow structure subbus has the same field ele as the element of
Simulink.Bus object SubBus. Based on these specifications, the following
table shows how Stateflow resolves symbols in dot notation for indexing fields
of the structures in this example:

11-18

Structure Operations

Dot Notation Symbol Resolution

in.c Field c of input structure in

in.a[1] Second value of the vector field a of input structure in

out.sb Substructure sb of output structure out

in.sb.ele[2][3] Value in row 2, column 3 of field ele of substructure
sb of input structure in

subbus.ele[1][1] Value in row 1, column 1 of field ele of local structure
subbus

Assigning Values
You can assign values to any Stateflow structure except input structures —
that is, a structures with scope equal to Input. Here are the guidelines for
assigning values to output, local, and temporary structures:

Operation Conditions

Assign one structure to another
structure

You must define both structures with
the same Simulink.Bus object in the
base workspace

Assign one structure to a
substructure of a different structure
and vice versa

You must define the structure with
the same Simulink.Bus object in the
base workspace as the substructure

Assign a field of one structure to a
field of another structure

The fields must have the same type
and size

Note In this case, you do not need
to define the Stateflow structures
with the same Simulink.Bus object
in the base workspace.

For example, the following table presents valid and invalid structure
assignments based on the specifications for the model sfbus_demo, as
described in “Example of Stateflow Structures” on page 11-3:

11-19

11 Working with Structures and Bus Signals in Stateflow

Assignment Valid or
Invalid?

Rationale

outbus = inbus; Valid Both outbus and inbus are defined
by the same Simulink.Bus object,
COUNTERBUS.

inbus = outbus; Invalid You cannot write to input structures.

inbus.limits = outbus.limits; Invalid You cannot write to fields of input
structures.

counterbus_struct = inbus; Valid Both counterbus_struct and inbus
are defined by the sameSimulink.Bus
object, COUNTERBUS.

counterbus_struct.inputsignal =
inbus.inputsignal;

Valid Both counterbus_struct.inputsignal
and inbus.inputsignal have the
same type and size because they
each reference field inputsignal, a
substructure of the Simulink.Bus object
COUNTERBUS.

outbus.limits.upper_saturation_limit =
inbus.inputsignal.input;

Valid The field upper_saturation_limit
from limits, a substructure of
COUNTERBUS, has the same type and size
as the field input from inputsignal, a
different substructure of COUNTERBUS.

outbus.limits = inbus.inputsignal; Invalid The substructure limits is defined by a
different Simulink.Bus object than the
substructure inputsignal.

Getting Addresses
When you write custom functions that take structure pointers as arguments,
you must pass the structures by address. To get addresses of Stateflow
structures and structure fields, use the & operator, as in the following
examples:

• &in — Address of Stateflow structure in

• &in.b — Address of field b in Stateflow structure in

11-20

Structure Operations

The model sfbus_demo contains a custom C function counterbusFcn that
takes structure pointers as arguments, defined as follows in a custom header
file:

...
extern void counterbusFcn

(COUNTERBUS *u1, int u2, COUNTERBUS *y1, int *y2);
...

To call this function, you must pass addresses to two structures defined by the
Simulink.Bus object COUNTERBUS, as in this example:

counterbusFcn(&counterbus_struct, u2, &outbus, &y2);

See “Example of Stateflow Structures” on page 11-3 for a description of the
structures defined in sfbus_demo.

11-21

11 Working with Structures and Bus Signals in Stateflow

Integrating Custom Structures in Stateflow
You can define custom structures in C code, which you can then integrate
with your Stateflow chart for simulation and Real-Time Workshop® (RTW)
code generation. Follow these steps:

1 Define your structure in C, creating custom source and header files.

The header file must contain the typedef statements for your structures.
For example, the model sfbus_demo uses custom structures, defined in a
custom header file as follows:

...
#include "tmwtypes.h"

typedef struct {
int input;

} SIGNALBUS;

typedef struct {
int upper_saturation_limit;
int lower_saturation_limit;

} LIMITBUS;

typedef struct {
SIGNALBUS inputsignal;
LIMITBUS limits;

} COUNTERBUS;
...

2 Define a Simulink.Bus object in the base workspace that matches each
custom structure typedef.

For example, the model sfbus_demo, defines the following Simulink.Bus
objects to match each typedef in the custom header file:

11-22

Integrating Custom Structures in Stateflow

3 Open the Bus Editor and for each bus object in the base workspace defined
in custom code, add the name of the header file that contains the matching
typedef.

For example, the model sfbus_demo specifies the custom header file
counterbus.h for the bus object COUNTERBUS:

11-23

11 Working with Structures and Bus Signals in Stateflow

4 Configure Stateflow to include your custom C code, as follows:

11-24

Integrating Custom Structures in Stateflow

To Include
Custom C
Code:

Do this:

In code
generated for
simulation

Follow the instructions in “Specifying Custom Code
Options for Stateflow Targets” on page 14-27.

In code
generated
for real-time
applications
using RTW

Follow these steps:
1 Open the Simulink model that contains the Stateflow

chart that uses your custom C structures.

The Model Editor opens on your desktop.
2 In the Model Editor, select

Simulation > Configuration Parameters.

The Configuration Parameters dialog box opens on
your desktop.

3 In the Configuration Parameters dialog box, select
Custom Code under Real-Time Workshop in the
Select tree on the left side of the dialog box.

Custom code options appear in the right pane of the
dialog box.

4 Follow instructions in “Custom Code Options” in the
Real-Time Workshop User’s Guide.

5 Build your model and fix errors (see “Debugging Structures in Stateflow”
on page 11-26).

6 Run your model.

11-25

11 Working with Structures and Bus Signals in Stateflow

Debugging Structures in Stateflow
You debug structures as you would other data in Stateflow, as described in
Chapter 15, “Debugging and Testing”. Using the Stateflow debugger, you
can examine the values of structure fields during simulation, either from
the graphical debugging window or from the command line, as described in
“Watching Data Values with Debuggers” on page 15-26. To view the values
of structure fields at the command line, use dot notation to index into the
structure, as described in “Indexing Sub-Structures and Fields” on page 11-17.

11-26

12

Truth Table Functions

Stateflow uses functions to capture programming steps that you call
repeatedly in a Stateflow diagram. In truth tables, you specify logical
behavior with conditions, decisions, and actions. For purely logical behavior,
truth tables are easier to program, easier to maintain, and easier for others
to read than graphical functions. Truth tables also help you complete your
function by telling you whether you have specified enough or too many
decisions for the conditions you specify. To learn how to construct successful
truth tables, see the following sections:

What Is a Truth Table? (p. 12-3) Describes the truth tables that
Stateflow truth table functions
implement.

Language Options for Stateflow
Truth Tables (p. 12-5)

Describes the language options for
specifying conditions, actions, and
decisions in Stateflow truth tables

Using Truth Tables (p. 12-7) Describes the recommended steps
for building and troubleshooting
truth tables.

Building a Simulink Model with a
Stateflow Truth Table (p. 12-8)

Shows you how to create a Simulink
model that calls and executes a
Stateflow diagram with a truth
table.

Programming a Truth Table
(p. 12-24)

Describes procedures for
programming a truth table.

Debugging a Truth Table (p. 12-45) Shows you how to use the Parser
and Debugging window during
simulation to debug a truth table.

12 Truth Table Functions

Correcting Overspecified and
Underspecified Truth Tables
(p. 12-55)

Describes over- and underspecified
truth tables detected by Stateflow
error checking.

Model Coverage for Truth Tables
(p. 12-58)

Describes and interprets the results
of an example model coverage report
for a truth table.

How Stateflow Realizes Truth Tables
(p. 12-63)

Describes the way that Stateflow
generates graphical functions to
realize truth tables.

Truth Table Editor Operations
(p. 12-72)

Describes the editing operations
available to you in the truth table
editor.

12-2

What Is a Truth Table?

What Is a Truth Table?
Stateflow uses truth table functions to realize logical decision-making
behavior that you call in an action language. Stateflow truth tables contain
conditions, decisions, and actions arranged like the following:

Condition Decision 1 Decision 2 Decision 3
Default
Decision

x == 1 T F F -

y == 1 F T F -

z == 1 F F T -

Action t = 1 t = 2 t = 3 t = 4

Each of the conditions entered in the Condition column must evaluate to
true (nonzero value) or false (zero value). Outcomes for each condition are
specified as T (true), F (false), or - (true or false). Each of the decision columns
combines an outcome for each condition with a logical AND into a compound
condition, that is referred to as a decision.

You evaluate a truth table one decision at a time, starting with Decision 1. If
one of the decisions is true, you perform its action and truth table execution is
complete. For example, if conditions 1 and 2 are false and condition 3 is true,
Decision 3 is true and the variable t is set equal to 3. The remaining decisions
are not tested and evaluation of the truth table is finished.

The last decision in the preceding example, Default Decision, covers all
possible remaining decisions. If Decisions 1, 2, and 3 are false, then the
Default Decision is automatically true and its action (t = 4) is executed. You
can see this behavior when you examine the following equivalent pseudocode
for the evaluation of the preceding truth table example:

12-3

12 Truth Table Functions

Description Pseudocode

Decision 1
Decision 1 Action if ((x == 1) & !(y == 1) & !(z == 1))

t = 1;

Decision 2
Decision 2 Action elseif (!(x == 1) & (y == 1) !(z == 1))

t = 2;

Decision 3
Decision 3 Action elseif (!(x == 1) & !(y == 1) (z == 1))

t = 3;

Default Decision
Default Decision Action else

t = 4;
endif

12-4

Language Options for Stateflow Truth Tables

Language Options for Stateflow Truth Tables
You implement truth tables by specifying conditions and actions using an
action language. The programming language options for Stateflow truth
tables are

• Stateflow Classic (the default)

• Embedded MATLAB

Stateflow Classic Truth Tables
Stateflow Classic truth tables allow you to specify conditions and actions
using the Stateflow action language, which supports basic C constructs and
provides access to MATLAB functions using the ml namespace operator or
ml function. For more information about the Stateflow action language, see
Chapter 8, “Using Actions in Stateflow”.

Stateflow Classic is the default language for Stateflow truth tables.

Embedded MATLAB Truth Tables
Embedded MATLAB truth tables allow you to specify conditions and actions
using the Embedded MATLAB action language. Embedded MATLAB truth
tables offer several advantages over Stateflow classic truth tables:

• The Embedded MATLAB language provides a richer syntax for specifying
control flow logic in truth table actions. It provides for loops, while loops,
nested if statements, and switch statements.

• You can call MATLAB functions directly in truth table actions. Also, you
can call Embedded MATLAB library functions (for example MATLAB sin
and fft functions) and generate code for these functions using Real-Time
Workshop.

• You can create temporary or persistent variables during simulation or in
code directly without having to define them in the Model Explorer.

• Embedded MATLAB uses a better debugging scheme. It is easier to set
breakpoints on lines of code, step through code, and watch data values
through tool tips.

12-5

12 Truth Table Functions

• You can use persistent variables in truth table actions. This feature allows
you to define data that persists across multiple calls to the truth table
function during simulation.

• You get more comprehensive model coverage. Embedded MATLAB truth
tables generate coverage reports on branches in conditions and actions.
Stateflow classic truth tables provide coverage reports for conditions only.
For more information, see “Model Coverage for Truth Tables” on page 12-58.

Selecting a Language for Stateflow Truth Tables
To specify an action language for your Stateflow truth table, follow these steps:

1 Double-click the truth table to open the Truth Table Editor.

2 Select Language from the Settings menu.

3 Choose a language from the drop-down menu.

Migrating from Stateflow Classic to Embedded
MATLAB Truth Tables
When you migrate from a Stateflow Classic truth table to an Embedded
MATLAB truth table, you must verify that the code used to program the
actions conforms to Embedded MATLAB syntax. Inconsistencies between the
two languages include

• In Embedded MATLAB, indices are one-based; in the Stateflow action
language, you can specify the first index.

• In Embedded MATLAB, the syntax for not equal to is ~=; in the Stateflow
action language, the equivalent syntax is !=.

You can check for syntax errors by using the Run Diagnostics command in
the Truth Table Editor, as described in “Checking Truth Tables for Errors” on
page 12-45.

12-6

Using Truth Tables

Using Truth Tables
Here is the recommended workflow for using truth tables in Simulink models:

1 Add a truth table to your Simulink model using one of the methods
described in “Building a Simulink Model with a Stateflow Truth Table”
on page 12-8.

2 Specify properties of the truth table function, as described in “Specifying
Properties of Truth Table Functions in Stateflow” on page 12-15.

3 Select an action language and program the conditions and actions in the
truth table, as described in “Programming a Truth Table” on page 12-24.

4 Debug the truth table for syntax errors and for error during simulation, as
described in “Debugging a Truth Table” on page 12-45.

5 Check coverage of conditions and actions in the truth table, as described in
“Model Coverage for Truth Tables” on page 12-58.

6 Simulate the model and check the generated content for the truth tables, as
described in “How Stateflow Realizes Truth Tables” on page 12-63.

12-7

12 Truth Table Functions

Building a Simulink Model with a Stateflow Truth Table
There are several ways to add a Stateflow truth table to a Simulink model:

Procedure Action Languages
Supported

How To Do It

Add a Truth Table block
directly to the model

Embedded MATLAB
only

See Appendix C, “The
Truth Table Block”.

Add a Stateflow block
that calls a truth table
function

Stateflow Classic and
Embedded MATLAB

See “Adding a Stateflow
Block that Calls a Truth
Table Function” on page
12-8.

Once you build a model in this section, finish it by programming the truth
table with its behavior in “Programming a Truth Table” on page 12-24.

Note The Stateflow diagram you create in this section contains the least
amount of Stateflow programming possible. This might appeal to Simulink
users who know little about Stateflow but want to use it to execute a truth
table function.

Adding a Stateflow Block that Calls a Truth Table
Function
This section describes how to add a Stateflow block to your Simulink model,
then create a Stateflow diagram that calls a truth table function. The
following topics are covered:

• “Creating a Simulink Model” on page 12-9

• “Creating a Stateflow Truth Table” on page 12-12

• “Specifying Properties of Truth Table Functions in Stateflow” on page 12-15

• “Calling a Truth Table in a Stateflow Action” on page 12-17

• “Creating Truth Table Data in Stateflow and Simulink” on page 12-20

12-8

Building a Simulink Model with a Stateflow Truth Table

Once you build a model in this section, finish it by programming the truth
table with its behavior in “Programming a Truth Table” on page 12-24.

Creating a Simulink Model
To execute a truth table, you first need a Simulink model that calls a Stateflow
block. Later, you will create a Stateflow diagram for the Stateflow block that
calls a truth table function. In this section, you create a Simulink model that
calls a Stateflow block with the following procedure:

1 At the MATLAB prompt, enter the following command:

sfnew

An untitled Simulink model with a Stateflow block appears as shown.

2 Click and drag the Stateflow block to the center of the Simulink window as
shown.

12-9

12 Truth Table Functions

This makes room for the blocks you add in the steps that follow.

3 In the Simulink window, from the View menu, select Library browser.

The Simulink Library Browser window opens with the Simulink node
expanded.

4 Under the Simulink node, select the Sources library.

The right pane of the Simulink Library Browser window displays the
block members of the Sources library.

12-10

Building a Simulink Model with a Stateflow Truth Table

5 From the right pane of the Simulink Library Browser window, click and
drag the Constant block to the left of the Stateflow block in the Simulink
model.

6 Add two more Constant blocks to the left of the Chart block and a Display
block (from the Sinks library) to the right of the Chart block.

Your model should now have the following appearance:

12-11

12 Truth Table Functions

7 In the Simulink model window, double-click the top Constant block.

8 In the resulting Block Parameters dialog, change the Constant value
field to 1 and select OK to close the dialog.

9 In the Simulink model window, from the Simulation menu, select
Configuration Parameters.

The Configuration Parameters dialog opens.

10 Set

• Solver Options Type field to Variable-step

• Stop Time to inf

11 Click OK to accept these values and close the Configuration Parameters
dialog.

12 Save the model as first_truth_table.mdl.

Creating a Stateflow Truth Table
You created a Simulink model in “Creating a Simulink Model” on page 12-9
that contains a Stateflow block. Now you need to open the Stateflow diagram
for the block and specify a truth table for it in the following steps:

1 In the Simulink model, double-click the Stateflow block named Chart.

An empty Stateflow diagram editor appears.

12-12

Building a Simulink Model with a Stateflow Truth Table

2 In the Stateflow diagram editor, select the Truth Table drawing tool:

3 Move the cursor into the empty diagram area and notice that the cursor
takes on the shape of a box.

4 Click to place a new truth table as shown.

12-13

12 Truth Table Functions

A shaded box appears with the title truthtable and a flashing text cursor
in the middle of the box.

5 Enter the label text

t = ttable(x,y,z)

and click outside the truth table box.

12-14

Building a Simulink Model with a Stateflow Truth Table

The signature label you enter for the truth table defines its name (ttable),
its arguments (x, y, and z), and its return value (t). Argument and return
values can each be a scalar value or a matrix of values. Multiple return
values are not allowed.

Note If you need to change the truth table label at any time, click the label
to place an editing cursor in the text of the label.

Specifying Properties of Truth Table Functions in Stateflow
After you add a truth table function to a Stateflow chart, you can specify its
properties by following these steps:

1 Right-click the truth table function box.

2 Select Properties from the resulting submenu.

The Truth Table Properties dialog box for the truth table function
appears, as shown:

12-15

12 Truth Table Functions

The fields in the Truth Table Properties dialog box are as follows:

Field Description

Name Function name; read-only; click this hypertext link to
bring the truth table function to the foreground in
its native Stateflow chart.

Breakpoints Select Function Call to set a breakpoint to pause
execution during simulation when the truth table
function is called.

12-16

Building a Simulink Model with a Stateflow Truth Table

Field Description

Function Inline
Option

This option controls the inlining of the truth table
function in generated code through the following
selections:

• Auto
Stateflow decides whether or not to inline the truth
table function based on an internal calculation.

• Inline
Stateflow inlines the truth table
function as long as it is not exported to other
charts and is not part of a recursion. A recursion
exists if the function calls itself either directly or
indirectly through another called function.

• Function
The function is not inlined.

Label You can specify the signature label for the function
through this field. See “Creating a Stateflow Truth
Table” on page 12-12 for more information.

Description Textual description/comment.

Document Link Enter a URL address or a general
MATLAB command. Examples are
www.mathworks.com, mailto:email_address,
and edit/spec/data/speed.txt.

Calling a Truth Table in a Stateflow Action
In “Creating a Stateflow Truth Table” on page 12-12, you created the truth
table function ttable with the signature

t = ttable(x,y,z)

Now you need to specify a call to the truth table function in the Stateflow
diagram. Later, when the diagram executes during simulation, it calls the
truth table.

12-17

12 Truth Table Functions

You can call truth table functions from the actions of any state or transition.
You can also call truth tables from other functions, including graphical
functions and other truth tables. Also, if you export a truth table, you can call
it from any Stateflow chart in the model.

Use the following steps to call the ttable function from the default transition
of its own Stateflow diagram.

1 Select the Default Transition button from the drawing toolbar.

2 Move the cursor to a location left of the truth table function and notice that
the cursor takes on the shape of a downward-pointing arrow.

3 Click to place a default transition into a terminating junction.

4 Click the question mark character (?) that appears on the highlighted
default transition.

A blinking cursor in a text field appears for entering the label of the default
transition.

12-18

Building a Simulink Model with a Stateflow Truth Table

5 Enter the text

{d = ttable(a,b,c);}

and click outside the transition label to finish editing it.

You might want to adjust the label’s position by clicking and dragging it to
a new location. The finished Stateflow diagram should have the following
appearance:

The label on the default transition that you entered provides a condition
action that calls the truth table with arguments and a return value. When
Simulink triggers the Stateflow block during simulation, the default
transition is taken and a call to the truth table ttable is made.

The call to the truth table in Stateflow action language must match the
truth table signature. This means that the type of the return value d
must match the type of the signature return value t, and the type of the
arguments a, b, and c must match the type of the signature arguments x,
y, and z. You ensure this with a later step in this section when you create
the data that you use in Stateflow.

6 From the File menu, select Save to save the model.

12-19

12 Truth Table Functions

Creating Truth Table Data in Stateflow and Simulink
When you create a truth table with its own signature, you specify data for
it in the form of a return value (t) and argument values (x, y, z). When
you specify a call to a truth table, as you did in “Calling a Truth Table in a
Stateflow Action” on page 12-17, you specify data that you pass to the return
and argument values of the truth table (d, a, b, and c). Now you need to define
this data for the Stateflow diagram in the following steps:

1 Double-click the truth table to open the Truth Table Editor.

2 In the Truth Table Editor, select the Edit Data/Ports button .

The Model Explorer window appears as shown.

Notice in the Model Hierarchy pane (left pane) that the node for the
function ttable is highlighted and that the Contents pane (right pane)
displays the output (t) and inputs (x, y, z) for ttable. By default, these
data are defined as scalars of type double. If you want to redefine these
data with a different array size and type, you do it in the Model Explorer.
However, no changes are necessary for this example.

Notice also in the Model Hierarchy pane that the node above the function
ttable is Chart, the name of the Stateflow diagram that contains the
truth table ttable.

3 In the Model Hierarchy pane, select Chart.

12-20

Building a Simulink Model with a Stateflow Truth Table

Notice that Chart contains no data in the Contents pane. You need to add
the return and argument data used in calling ttable.

4 From the Add menu, select Data.

A scalar data is added to the chart in the Contents pane of Explorer with
the default name data. This data matches argument x in type and size.

Tip To verify that the properties match, right-click data in the Contents
pane and select Properties. The property sheet shows that the type is
double and the size is scalar (the default when there is no entry in the
Size field).

5 In the Contents pane, double-click the entry data in the Name column.

A small text field opens with the name data highlighted.

6 In the text field, change the name to a and press Enter.

7 Click the entry Local under the Scope column.

A drop-down menu of selectable scopes appears with Local selected.

8 Select Input.

The scope Input means that Simulink provides the value for this data,
which it passes to the Stateflow diagram through an input port on the
Stateflow block.

You should now see the new data input a in the Contents pane.

9 Repeat steps 3 through 7 to add the data b and c with the scope Input,
and data d with a scope of Output.

The scope Output means that the Stateflow chart provides this data and
passes it to Simulink through an output port on the Stateflow block.

You should now see the following data in Stateflow Explorer:

12-21

12 Truth Table Functions

The data a, b, c, and d match their counterparts x, y, z, and t in the truth
table signature in size (scalar) and type (double), but have sources outside
the Stateflow block. Notice that input ports for a, b, and c, and an output
port for d appear on the Stateflow block in the Simulink model.

10 Complete connections to the Simulink diagram as shown.

12-22

Building a Simulink Model with a Stateflow Truth Table

11 From the File menu, select Save to save the model.

12-23

12 Truth Table Functions

Programming a Truth Table
In “Building a Simulink Model with a Stateflow Truth Table” on page 12-8,
you created a Simulink model with a Stateflow diagram that calls the truth
table ttable. This truth table is empty and requires programming to specify
its behavior. This section shows you how to program this truth table, covering
the topics in the following steps:

1 “Opening a Truth Table for Editing” on page 12-24 — You open a truth
table editor for a truth table object in the Stateflow diagram to begin
programming it.

2 “Entering Truth Table Conditions” on page 12-25 — Shows you how to
enter conditions in the Condition Table of a truth table.

3 “Entering Truth Table Decisions” on page 12-27 — Shows you how to enter
decisions in the Condition Table of a truth table.

4 “Entering Truth Table Actions” on page 12-30 — Shows you how to enter
actions for each decision in the Action Table of a truth table.

5 “Assigning Truth Table Actions to Decisions” on page 12-37 — Shows
you how to assign actions that you entered in the Action Table to each
decision in the Condition Table.

6 “Adding Initial and Final Actions” on page 12-42 — Shows you how to
specify special initial and final actions in the Action Table of a truth table.

When you finish programming ttable in this section, the example model you
start in “Building a Simulink Model with a Stateflow Truth Table” on page
12-8 is finished. Continue by debugging the truth table in “Debugging a Truth
Table” on page 12-45.

Opening a Truth Table for Editing
After you create and label a truth table in a Stateflow diagram, you specify
its logical behavior in the truth table editor. Double-click the truth table
function to open its editor.

12-24

Programming a Truth Table

The truth table editor is titled in <model name>/<truth table name> format
in its header. An empty default truth table contains a Condition Table and
an Action Table, each with one row. The Condition Table also contains a
single decision column, D1, and a single action row.

Selecting An Action Language
Select the language you want to use for programming conditions and actions
in your truth table by following these steps:

1 In the Truth Table Editor, select Language from the Settings menu.

2 Choose a language from the drop-down menu.

Entering Truth Table Conditions
Conditions are the starting point for specifying logical behavior in a truth
table. You open the truth table ttable for editing in “Opening a Truth Table
for Editing” on page 12-24. In this topic, you start programming the behavior
of ttable by specifying its conditions.

You enter conditions in the Condition column of the Condition Table. For
each condition that you enter, you can also enter an optional description in
the Description column. Use the following procedure to enter the conditions
of the truth table ttable:

1 Click anywhere in the Condition Table to select it.

12-25

12 Truth Table Functions

2 Click the Append Row button twice.

Two rows are appended to the bottom of the Condition Table.

3 Click and drag the bar separating the Condition Table and the Action
Table panes down to enlarge the Condition Table pane.

4 In the Condition Table, click the top cell of the Description column.

The cell is highlighted and a flashing text cursor appears in the cell.

5 Enter the following text:

x is equal to 1

Condition descriptions are optional, but are transferred as comments into
the generated code for the truth table.

6 Press the Tab key to select the next cell on the right in the Condition
column.

Tip You can use Shift+Tab to select the next cell on the left.

7 In the first row cell of the Condition column, enter the following text:

XEQ1:

This is an optional label that you can include with the condition. In the
generated code for a truth table, the condition label becomes the name of a
temporary data variable that stores the outcome of its condition. If no label
is entered, Stateflow names a temporary variable of its own.

Condition labels must begin with an alphabetic character ([a-z][A-Z])
followed by any number of alphanumeric characters ([a-z][A-Z][0-9])
or an underscore (_).

8 Press Enter and enter the following text:

x == 1

12-26

Programming a Truth Table

This is the actual condition. Each condition you enter must evaluate to zero
(false) or nonzero (true). You can use optional brackets in the condition (for
example, [x == 1]) as you would in Stateflow action language.

You can use data passed to the truth table function through its arguments
in truth table conditions. The preceding condition tests whether the
argument x is equal to 1. You can also use data defined for parent objects of
the truth table in Stateflow, including the Stateflow diagram.

9 Repeat the preceding steps to enter the remaining two conditions, as shown:

Entering Truth Table Decisions
Each decision column (D1, D2, and so on) binds a group of condition outcomes
together with an AND relationship into a decision. The allowed values for the

12-27

12 Truth Table Functions

condition outcomes in a decision are T (true), F (false), and - (true or false).
In “Entering Truth Table Conditions” on page 12-25 you entered conditions
for the truth table ttable. Continue by entering decisions in the decision
columns with the following steps:

1 Click anywhere in the Condition Table to make sure it is selected.

2 Click the Append Column toolbar button three times to add three
columns to the right end of the Condition Table.

3 Click the top cell in decision column D1.

The cell is highlighted and a flashing text cursor appears in the cell.

4 Press the space bar until a value of T appears.

Pressing the space bar toggles through the possible values of F, -, and T.
You can also enter these characters directly. All other entries are rejected.

5 Press the down arrow key to advance to the next cell down in the D1
column.

In the decision columns, you can use the arrow keys to advance to another
cell in any direction. You can also use Tab and Shift+Tab to advance left
or right in these cells.

6 Enter the remaining values for the decision columns, as shown in the
following:

12-28

Programming a Truth Table

During execution of the truth table, decisions are tested in left to right order.
The order of testing for individual condition outcomes within a decision is
undefined. The current implementation of truth tables in Stateflow evaluates
the conditions for each decision in top-down order (first condition 1, then
condition 2, and so on). Because this implementation is subject to change in
the future, you must not depend on a particular evaluation order.

The Default Decision Column
The last decision column in ttable, D4, is the default decision for this truth
table. The default decision covers any remaining decisions not tested for in
preceding decision columns to the left. You enter a default decision as the
last decision column on the right with an entry of - for all conditions in the
decision, where - represents any outcome for the condition.

In the preceding example, the following decisions are specified by the default
decision column, D4:

12-29

12 Truth Table Functions

Condition
Decision
4

Decision
5

Decision
6

Decision
7

Decision
8

x == 1 F T F T T

y == 1 F F T T T

z == 1 F T T F T

Note The default decision column must be the last column on the right in
the Condition Table.

Entering Truth Table Actions
During execution of the truth table, decisions are tested in left to right order.
When a decision is realized during execution of the truth table, the action in
the Action Table specified in the Actions row for that decision column is
executed and the truth table is exited.

In “Entering Truth Table Decisions” on page 12-27 you entered decisions in
the truth table editor. The next step is to enter the actions you want to occur
for each decision in the Action Table. Later, you assign these actions to their
decisions in the Actions row of the Condition Table.

This section describes how to program truth table actions. It includes the
following topics:

• “Setting Up the Action Table” on page 12-31 — Shows you how to set up the
Action table in truth table ttable.

• “Programming Actions in Stateflow Classic Action Language” on page
12-32 — Provides sample code in Stateflow action language to program
actions in ttable. Choose this section if you selected Stateflow Classic as
the language for this truth table.

• “Programming Actions in Embedded MATLAB Action Language” on page
12-33 — Provides sample M-code to program actions in ttable. Choose
this section if you selected Embedded MATLAB as the language for this
truth table.

12-30

Programming a Truth Table

Setting Up the Action Table
1 Click anywhere in the Action Table to select it.

2 Click the Append Row toolbar button three times to add three rows
to the bottom of the Action Table.

3 Click and drag the bottom border of the truth table editor window down to
enlarge it and clearly show all rows of the Action Table, as shown.

4 Program the actions using the language you selected for the truth table:

12-31

12 Truth Table Functions

If you selected Use this procedure

Stateflow Classic “Programming Actions in Stateflow Classic Action
Language” on page 12-32

Embedded
MATLAB

“Programming Actions in Embedded MATLAB
Action Language” on page 12-33

Programming Actions in Stateflow Classic Action Language
Follow this procedure to program your actions in Stateflow action language:

1 Click the top cell in the Description column of the Action Table.

The cell is highlighted and a flashing text cursor appears in the cell.

2 Enter the following description:

set t to 1

Action descriptions are optional, but are carried into the generated code for
the truth table as code comments.

3 Press Tab to select the next cell on the right, in the Action column.

4 Enter the following text:

A1:

You begin an action with an optional label followed by a colon (:). Later, you
enter these labels in the Actions row of the Condition Table to specify an
action for each decision column. Like condition labels, action labels must
begin with an alphabetic character ([a-z][A-Z]) followed by any number
of alphanumeric characters ([a-z][A-Z][0-9]) or an underscore (_).

5 Press Enter and enter the following text:

t=1;

You can use data passed to the truth table function through its arguments
and return value in truth table actions. The preceding action, t=1, sets the
value of the return value t. You can also specify actions with data defined

12-32

Programming a Truth Table

for a parent object of the truth table, including the Stateflow diagram.
Truth table actions can also broadcast or send events that are defined for
the truth table, or for a parent, such as the diagram (chart) itself.

If you omit the semicolon at the end of an action, the result of the action
is echoed to the MATLAB window when it is executed during simulation.
Use this as a debugging tool.

6 Enter the remaining actions in the Action Table, as shown in the following:

Now you are ready to assign actions to decisions, as described in “Assigning
Truth Table Actions to Decisions” on page 12-37.

Programming Actions in Embedded MATLAB Action Language
If you selected Embedded MATLAB as your language, you can write M-code
to program your actions. M-code allows you to add control flow logic and to
call MATLAB functions directly. In the following procedure you will program

12-33

12 Truth Table Functions

an action in the truth table ttable, using the following features of the
embedded MATLAB syntax:

• Persistent variables

• if ... else ... end control flows

• for loop

• Ability to call the MATLAB function plot directly

Follow these steps:

1 Click the top cell in the Description column of the Action Table.

The cell is highlighted and a flashing text cursor appears in the cell.

2 Enter the following description:

Maintain a counter and a circular vector of length 6.
Every time this action is called,
output t takes the next value of the vector.

Action descriptions are optional, but are carried into the generated code for
the truth table as code comments.

3 Press Tab to select the next cell on the right, in the Action column.

4 Enter the following text:

A1:

You begin an action with an optional label followed by a colon (:). Later, you
enter these labels in the Actions row of the Condition Table to specify an
action for each decision column. Like condition labels, action labels must
begin with an alphabetic character ([a-z][A-Z]) followed by any number
of alphanumeric characters ([a-z][A-Z][0-9]) or an underscore (_).

5 Press Enter and enter the following text:

persistent values counter;
cycle = 6;

12-34

Programming a Truth Table

if isempty(counter)
% Initialize counter to be zero
counter = 0;

else
% Otherwise, increment counter
counter = counter + 1;

end

if isempty(values)
% Values is a vector of 1 to cycle
values = zeros(1, cycle);
for i = 1:cycle

values(i) = i;
end

% For debugging purposes, call the MATLAB
% function "plot" to show values
plot(values);

end

% Output t takes the next value in values vector
t = values(mod(counter, cycle) + 1);

You can use data passed to the truth table function through its arguments
and return value in truth table actions. The preceding action sets the
return value t equal to the next value of the vector values. You can also
specify actions with data defined for a parent object of the truth table,
including the Stateflow diagram. Truth table actions can also broadcast or
send events that are defined for the truth table, or for a parent, such as
the diagram (chart) itself.

If you omit the semicolon at the end of an action, the result of the action
is echoed to the MATLAB window when it is executed during simulation.
Use this as a debugging tool.

6 Enter the remaining actions in the Action Table, as shown:

12-35

12 Truth Table Functions

Note that if you simulate this model, condition D1 will always be true,
causing action A1 to execute and display a plot of the content of the vector
values, as follows:

12-36

Programming a Truth Table

Now you are ready to assign actions to decisions, as described in “Assigning
Truth Table Actions to Decisions” on page 12-37.

Assigning Truth Table Actions to Decisions
You must assign at least one action from the Action Table to each decision in
the Condition Table. This association allows Stateflow to determine what
action to execute when a decision tests as true.

In this section, you will learn how to link actions to decisions.

Rules for Assigning Actions to Decisions
Stateflow allows you to be very creative in assigning actions. Here is a list of
rules for assigning actions to decisions in a truth table.

• You specify actions for decisions by entering a row number or a label in the
Actions row cell of a decision column.

12-37

12 Truth Table Functions

If you use a label specifier, the label must be entered with the action in the
Action Table.

• You must specify at least one action for each decision.

Actions for decisions are not optional. Each decision must have at least one
action specifier that points to an action in the Action Table. If you want
to specify no action for a decision, specify a row that contains no action
statements.

• You can specify multiple actions for a decision with multiple specifiers
separated by a comma.

For example, for the decision column D1 you can specify A1, A2, A3 or 1, 2, 3
to execute the first three actions if decision D1 is true.

• You can mix row number and label action specifiers interchangeably in
any order.

The following example uses both row and label action specifiers.

• You can specify the same action for more than one decision, as shown.

12-38

Programming a Truth Table

• Row number action specifiers in the Actions row of the Condition Table
automatically adjust to changes in the row order of the Actions Table.

In the following example, decisions D3 and D4 are assigned the actions in
rows 3 and 4 of the Action Table, respectively.

12-39

12 Truth Table Functions

Select row 4 in the Action Table and select the Move Row Up tool to
reverse rows 3 and 4, and notice the change in the action specifiers for
columns D3 and D4, as shown.

12-40

Programming a Truth Table

How to Assign Actions to Decisions
This section describes how to assign actions to decisions in the example truth
table ttable. In this example, the Actions row cell for each decision column
contains a label specified for each action in the Action Table. Decision D1
is assigned the action t=1, decision D2 is assigned the action t=2, and so
on. Follow these steps:

1 Click the bottom cell in decision column D1, the first cell of the Actions
row of the Condition Table.

2 Enter the action specifier A1 for decision column D1, that links the action
labeled A1 in the Action Table to decision D1.

3 Enter the action specifiers for the remaining decision columns as shown
in the following:

12-41

12 Truth Table Functions

Now you are ready to perform the final step in programming a truth table,
“Adding Initial and Final Actions” on page 12-42.

Adding Initial and Final Actions
In addition to the actions for decisions, Stateflow also lets you add initial and
final actions to the truth table function. Initial actions specify an action that
executes before any decisions are tested. Final actions specify an action that
executes as the last action before the truth table is exited. To specify initial
and final actions for a truth table, use the action labels INIT and FINAL in
the Action Table.

Use the following procedure to add initial and final actions to display
diagnostic messages in the MATLAB Command Window before and after the
execution of the truth table ttable:

1 In the truth table editor for the truth table ttable, right-click row 1 of the
Action Table.

12-42

Programming a Truth Table

A pop-up menu appears.

2 From the pop-up menu, select Insert Row.

A blank row is inserted at the beginning of the Action Table.

3 Click the Append Row tool .

A blank row is appended to the bottom of the Action Table.

4 Click and drag the bottom border of the truth table editor to expose all six
rows of the Action Table, as shown.

5 Add the initial action in row 1 as follows:

12-43

12 Truth Table Functions

Truth Table
Type

Description Action

Stateflow Classic Initial
action:Display
message

INIT:ml.disp('truth table
ttable entered');

Embedded
MATLAB

Initial
action:Display
message

INIT:disp('truth table
ttable entered');

6 Add the final action in row 6 as follows:

Truth Table
Type

Description Action

Stateflow Classic Final
action:Display
message

FINAL:ml.disp(’truth table ttable
exited’);

Embedded
MATLAB

Final
action:Display
message

FINAL:disp('truth table
ttable exited');

Even though the initial and final actions for the preceding truth table example
are shown in the first and last rows of the Action Table, you can enter these
actions in any row. You can also explicitly assign the initial and final actions
to decisions by using the action specifier INIT or FINAL in the Actions row of
the Condition Table.

12-44

Debugging a Truth Table

Debugging a Truth Table
In “Programming a Truth Table” on page 12-24 you completed a Simulink
model with a truth table by programming the truth table. Now you need to
begin the process of debugging the truth table. Use the following topics to
debug the truth table ttable in its Stateflow diagram.

1 “Checking Truth Tables for Errors” on page 12-45 — Shows you how to run
diagnostics on truth tables to check for syntax errors.

2 “Debugging a Truth Table During Simulation” on page 12-46 — Shows you
how to debug each condition and action of a truth table during simulation.

Checking Truth Tables for Errors
Once you completely specify your truth tables you need to begin the process of
debugging them. The first step is to run diagnostics to check truth tables for
syntax errors including overspecification and underspecification, as described
in “Correcting Overspecified and Underspecified Truth Tables” on page 12-55.

To check for syntax errors, follow these steps:

1 Double-click the truth table to open its editor.

2 In the Truth Table Editor toolbar, click the Run Diagnostics button .

If there are no errors or warnings, the Builder window appears and reports
a message of success. If errors are found, the Builder window lists them.
For example, if you change the action for decision column D4 to an action
that does not exist, the following Builder window appears:

12-45

12 Truth Table Functions

Stateflow highlights each detected error with a red button and each
warning with a gray button. The first error message is highlighted in the
top pane and the diagnostic message is displayed in the bottom pane.

Truth table diagnostics run automatically when you start simulation of the
model with a new or modified truth table. If no errors are found, the Builder
window does not appear and simulation commences immediately.

Debugging a Truth Table During Simulation
There are several ways to debug truth tables during simulation:

12-46

Debugging a Truth Table

Method Use With How To Do It

Use Stateflow
debugging tools to step
through each condition
and action, and monitor
data values during
simulation.

Stateflow Classic truth
table and Embedded
MATLAB truth table

See “Using Stateflow
Debugging Tools” on
page 12-47.

Use Embedded
MATLAB debugging
tools to step through
embedded MATLAB
code generated by the
truth table.

Embedded MATLAB
truth table only

See “Using Embedded
MATLAB Debugging
Tools” on page 12-54.

Using Stateflow Debugging Tools
When you use Stateflow debugging tools to debug truth tables, you must
perform these tasks:

1 Specify a breakpoint for the call to the truth table.

2 Step through the conditions and actions.

Specifying a Breakpoint for the Call to a Truth Table. Before you
debug the truth table during simulation, you must set a breakpoint for the
truth table in its properties dialog. This breakpoint pauses execution during
simulation so that you can debug each execution step of a truth table using
the Stateflow Debugger.

Follow these steps:

1 In the Stateflow diagram editor, right-click the truth table.

2 In the resulting pop-up shortcut menu, select Properties.

The Truth Table properties dialog appears, as shown.

12-47

12 Truth Table Functions

3 For Breakpoints, select Function Call.

This sets a breakpoint to occur when this truth table function is called in
the Stateflow diagram during simulation.

4 Select OK to save settings and close the Truth Table properties dialog.

Stepping Through Conditions and Actions of a Truth Table. After
setting a breakpoint for the truth table function call, you can step through
the conditions and actions by following these steps:

1 Select the Debug button in the Stateflow diagram editor toolbar to
start the Stateflow Debugging window as shown.

12-48

Debugging a Truth Table

2 From the Stateflow Debugging window, select the Start button to begin
simulation of your model.

When you simulate your model, Stateflow checks the truth tables
automatically for syntactical errors if they have changed since the last
simulation. If you receive errors or warnings, make corrections before you
try to simulate again.

If Stateflow finds no syntactical errors in the truth table, Stateflow builds a
simulation application and begins the simulation of your model.

3 Wait until the breakpoint for the call to the truth table is reached.

When this breakpoint is encountered, the truth table ttable appears and
the Start button in the Stateflow Debugger changes to the Continue
button.

4 In the Stateflow Debugging window, click the Step button three times to
advance simulation through the call to the truth table.

The INIT action of the truth table is highlighted prior to its execution.

12-49

12 Truth Table Functions

5 Click Step to execute the INIT action and advance truth table execution to
the first condition, as shown.

6 Click Step to evaluate the first condition and advance truth table execution
to the second condition.

12-50

Debugging a Truth Table

7 Click Step to evaluate the second condition and advance truth table
execution to the third condition.

8 Click Step to evaluate the third condition and advance truth table
execution to the first decision.

12-51

12 Truth Table Functions

9 Click Step twice.

Because the first decision is true, truth table execution advances to its
action, which is labeled A1.

10 Click Step three times to execute action A1 and advance to the FINAL action.

11 In the Stateflow Debugging window, from the Browse Data pull-down,
select All Data (Current Chart).

12-52

Debugging a Truth Table

A continuously updated display appears in the bottom pane of the
Stateflow Debugging window, as shown.

You can use this display to monitor Stateflow data during simulation.

12 In the Stateflow Debugging window, click Step.

This executes the final action and exits the truth table. The Display block
in the Simulink window should now display the number 1, as shown.

12-53

12 Truth Table Functions

13 Change the values of the Constant blocks and continue stepping through
the simulation.

For example, you might want to set the Constant1 block to 1 (sets b to 1)
and the other Constant blocks to 0 (sets a and c to 0). Or you might want to
set all the Constant blocks to 0. To enter a new value for a Constant block,
double-click it. In the resulting Block Parameters dialog enter the new
value in the Constant value field.

Using Embedded MATLAB Debugging Tools
Embedded MATLAB truth tables generate content as embedded MATLAB
code, a format that offers advantages for debugging. You can set breakpoints
on any line of generated code (whereas you cannot set breakpoints directly on
a truth table). You can debug code generated by Embedded MATLAB truth
tables the same way you debug an Embedded MATLAB function, as described
in “Debugging an Embedded MATLAB Function”.

For more information about how to generate content for truth tables, see
“How Stateflow Realizes Truth Tables” on page 12-63.

12-54

Correcting Overspecified and Underspecified Truth Tables

Correcting Overspecified and Underspecified Truth Tables
An overspecified truth table contains a decision that will never be executed
because it is already specified in a previous decision in the Condition Table.
An underspecified truth table lacks one or more possible decisions that might
require an action to avoid undefined behavior in the application. Stateflow
helps you correct overspecified and underspecified truth tables, as described
in the following topics:

• “Defining an Overspecified Truth Table” on page 12-55 — Gives you an
example of an overspecified truth table and a truth table that is not
overspecified.

• “Defining an Underspecified Truth Table” on page 12-56 — Gives you an
example of an underspecified truth table and a truth table that is not
underspecified.

Defining an Overspecified Truth Table
An overspecified truth table contains at least one decision that will never
be executed because it is already specified in a previous decision in the
Condition Table. The following is the Condition Table of an overspecified
truth table:

The decision in column D3 (-TT) specifies the decisions FTT and TTT. These
decisions have already been specified by decisions D1 (FTT) and D2 (TTT and
TFT). Therefore column D3 is an overspecification.

12-55

12 Truth Table Functions

The following is the Condition Table of a truth table that appears to be
overspecified, but is not:

In this case, the decision D4 specifies two decisions (TTT and FTT). FTT
is specified by decision D1, but TTT is not specified in a previous decision
column. Therefore, this Condition Table is not overspecified.

Defining an Underspecified Truth Table
An underspecified truth table lacks one or more possible decisions that might
require an action to avoid undefined behavior. The following is the Condition
Table of an underspecified truth table:

12-56

Correcting Overspecified and Underspecified Truth Tables

Complete coverage of the conditions in the preceding truth table requires a
Condition Table with every possible decision, like the following example:

A possible workaround is to specify an action for all other possible decisions
through a default decision, as in the following example:

The last decision column is the default decision for the truth table. The
default decision covers any remaining decisions not tested for in the preceding
decision columns. See “The Default Decision Column” on page 12-29 for an
example and more complete description of the default decision column for
a Condition Table.

12-57

12 Truth Table Functions

Model Coverage for Truth Tables
Stateflow reports model coverages for the decisions made by the objects in
a Stateflow diagram during model simulation. The model coverage report
includes coverage for the decisions made by truth table functions, as follows:

Type of Truth
Table

Type of Coverage

Stateflow Classic Stateflow generates coverage reports for conditions only.

Embedded
MATLAB

Stateflow generates coverage reports for conditions
and actions because the embedded MATLAB action
languages lets you specify decision points in actions
using control flow constructs such as loops and switch
statements.

This section examines model coverage for an example Stateflow Classic
truth table, check_temp, which is tested during simulation in the following
Stateflow diagram:

12-58

Model Coverage for Truth Tables

The following shows the contents of the check_temp truth table:

12-59

12 Truth Table Functions

You generate model coverage reports for a model during simulation. You first
specify the creation of the reports in Simulink and then simulate the model.
When simulation ends, a model coverage report appears in a browser window.
See “Making Model Coverage Reports” on page 15-45 for information on how
to set up a model coverage report.

Note The Model Coverage tool requires a Simulink Verification and
Validation license.

The following is the part of a model coverage report that reports on the
check_temp truth table:

12-60

Model Coverage for Truth Tables

Coverage for the truth table function in the Coverage (this object) column
shows no valid coverage values. The reason for this is that the container
object for the truth table function, the chart, makes no decision on whether to
execute the check_temp truth table or not.

Stateflow implements a Stateflow Classic truth table by generating a
graphical function for it. The decision logic of the truth table is implemented
internally in the transitions of the graphical function generated for the
truth table. See “How Stateflow Realizes Truth Tables” on page 12-63 for a
description of the generated graphical function for a truth table.

The transitions of the generated graphical function for a truth table contain
the decisions and conditions of the truth table. Coverage for the descendants
in the Coverage (inc. descendants) column includes coverage for these
conditions and decisions, which are tested when the truth table function is
called.

In the case of the check_temp truth table, the only decision covered in the
model coverage report is the D1 decision. There is no model coverage for the
default decision, D2.

12-61

12 Truth Table Functions

Note All logic that leads to taking a default decision is based on a false
outcome for all preceding decisions. This means that no logic is required for
the default decision, which receives no model coverage.

Coverages for the D1 decision and its individual conditions in the check_temp
truth table function are as follows:

• Decision coverage for the D1 decision is 100% because this decision was
tested both true and false during simulation.

• Condition coverage for the three conditions of the D1 decision indicate that
5 of 6 possible T/F values were tested.

Because each condition can have an outcome value of T or F, three
conditions can have 6 possible values. During simulation, only 5 of 6 were
tested. The D1 decision coverage column shows that the last condition
received partial condition coverage by not evaluating to false (F) during
simulation. The missing occurrence of the false (F) condition outcome is
indicated by the appearance of a red F character.

• MCDC coverage looks for decision reversals that occur because one
condition outcome changes from T to F or from F to T. The D1 decision
reverses when any of the conditions changes from T to F. This means that
the outcomes FTT, TFT, and TTF reverse this decision by a change in the
value of one condition.

The top two conditions for the D1 decision tested both true (T) and false (F)
with a resulting reversal in the decision from true (T) to false (F). However,
the bottom condition tested only a true (T) outcome but no false (F) outcome
(appearance of red F character). Therefore, two of a possible three reversals
were observed and coverage is 2/3 = 67%.

• The (ok) next to the ON action label indicates that its decision realized both
true (T) and false (F) during simulation. Because the default decision is
based on no logic of its own, it does not receive the (ok) mark.

12-62

How Stateflow Realizes Truth Tables

How Stateflow Realizes Truth Tables
Stateflow realizes the logical behavior specified in a truth table by generating
content as follows:

Type of Truth Table Generated Content

Stateflow Classic Graphical function

Embedded MATLAB Embedded MATLAB code

This section describes the mechanics of truth table generation in Stateflow:

• “Viewing Generated Content” on page 12-63 — Describes how to view the
generated content of truth tables.

• “How Stateflow Generates Graphical Functions for Truth Tables” on
page 12-64 — Describes how Stateflow generates a graphical function to
represent the logic of a Stateflow Classic truth table.

• “How Stateflow Generates Embedded MATLAB Code for Truth Tables” on
page 12-68 — Describes how Stateflow generates Embedded MATLAB code
to represent the logic of an Embedded MATLAB truth table.

Viewing Generated Content
Stateflow generates content for a truth table when you simulate your model.
Stateflow regenerates content whenever a truth table changes. To view the
generated content of a truth table, follow these steps:

1 Simulate the model that contains the truth table.

2 Double-click the truth table to open its editor.

3 Select the View Generated Content button.

Stateflow Classic truth tables display generated content as described in
“How Stateflow Generates Graphical Functions for Truth Tables” on page
12-64.

12-63

12 Truth Table Functions

How Stateflow Generates Graphical Functions for
Truth Tables
This section describes how Stateflow translates the logic of a Stateflow Classic
truth table into a graphical function.

In the following example, a Stateflow Classic truth table has three conditions,
four decisions and actions, and initial and final actions:

12-64

How Stateflow Realizes Truth Tables

Stateflow generates the following graphical function for the preceding truth
table:

Stateflow uses the top half of the generated function to do the following:

• Perform initial actions

• Evaluate the conditions and store the results in temporary data variables.

The temporary data for storing conditions is based on the labels that you
enter for the conditions. If no labels are specified, temporary data variables
are named by Stateflow.

12-65

12 Truth Table Functions

The following generated flow diagram for the check_temp truth table shows
this process, which includes number steps to show the order of execution:

The stored values for the conditions are used in the bottom half of the
function to make decisions on which action to perform. The following shows
the remaining half of the generated function, along with numbered steps for
showing the order of consideration for each condition and action:

12-66

How Stateflow Realizes Truth Tables

Each decision is implemented as a fork from a connective junction with one
of two possible paths:

• A transition segment with a decision followed by a segment with the
consequent action

The action is specified as a condition action that leads to the FINAL action
and termination of the flow diagram

• A transition segment that flows to the next fork for an evaluation of the
next decision

This transition segment has no condition or action.

12-67

12 Truth Table Functions

The preceding implementation continues from the first decision through the
remaining decisions in left to right column order. When a specified decision is
matched, the action specified for that decision is executed as a condition action
of its transition segment. Once the action is performed, the flow diagram
performs the final action for the truth table and terminates. This means that
only one action results from a call to a truth table graphical function. This also
implies that no data dependencies are possible between different decisions.

How Stateflow Generates Embedded MATLAB Code
for Truth Tables
Stateflow generates the content of Embedded MATLAB truth tables as
embedded MATLAB code that represents each action as a nested function
inside the main truth table function. :

Nested functions offer several advantages over subfunctions:

• Nested functions are independent of each other. Therefore, variables are
local to each function and not subject to name collisions.

• Nested functions can access all data from the main truth table function.

The generated content is displayed in an Embedded MATLAB Editor, which
provides tools for simulation and debugging, as described in “Debugging an
Embedded MATLAB Function”.

Here is the generated content for the Embedded MATLAB truth table
described in “Programming Actions in Embedded MATLAB Action Language”
on page 12-33:

• Main truth table function

12-68

How Stateflow Realizes Truth Tables

• Action A1

12-69

12 Truth Table Functions

• Actions A2, A3, and A4

12-70

How Stateflow Realizes Truth Tables

12-71

12 Truth Table Functions

Truth Table Editor Operations
This section describes the edit operations that you can perform in the truth
table editor. Use the following topics to learn operations that you can do in
the truth table editor:

• “Truth Table Editor Reference” on page 12-72— Identifies operations that
you can perform in a truth table editor with tables and toolbar icon tables.

• “Searching and Replacing Text in Truth Tables” on page 12-75 — Shows you
how the Stateflow Search & Replace tools work with Stateflow truth tables.

• “Using Row and Column Tooltip Identifiers” on page 12-77 — Shows you
how row and column tooltips can help you navigate in big truth tables.

Truth Table Editor Reference
This section describes the operations you can perform in the Truth Table
Editor.

Adding or Modifying Stateflow Data

Edit Data/Ports lets you add or modify Stateflow data with the
Model Explorer tool.

Appending Rows and Columns

Append Column adds a column on the right end of the selected
table.

Append Row adds a row to the bottom of the selected table.

Compacting the Table

Compact Table removes the empty rows and columns of the
selected table.

12-72

Truth Table Editor Operations

Deleting Text, Rows, and Columns
To delete the contents of a cell, do the following:

1 Right-click the cell.

2 From the resulting pop-up menu, select Delete Cell.

To delete an entire row or column, do the following:

1 Right-click the row or column header.

2 From the resulting pop-up menu, select Delete Row or Delete Column.

You can also click the row or column header to select the entire row or
column and press the Delete key.

Diagnosing the Truth Table

Run Diagnostics checks the truth table for syntax errors. See
“Debugging a Truth Table” on page 12-45.

Viewing Generated Content

View Generated Content displays the code generated for the
truth table. Stateflow Classic truth tables generate graphical
functions; Embedded MATLAB truth tables generate embedded
MATLAB code. See “How Stateflow Realizes Truth Tables” on
page 12-63.

Editing Tables
Both the default Condition Table and the default Action Table have one
empty row. Click a cell to edit its text contents. Use Tab and Shift+Tab to
move horizontally between cells. To add rows and columns to either table, see
“Appending Rows and Columns ” on page 12-72.

12-73

12 Truth Table Functions

You set the Truth Table Editor to display only one of the two tables by
double-clicking the header of the table to display. To revert to the display of
both tables, double-click the header of the displayed table.

Cells for the numbered rows in decision columns like D1 can take values of T,
F, or -. Once you select one of these cells, you can use the spacebar to step
through the T, F, and - values. In these cells you can use the left, right, up,
and down arrow keys to advance to another cell in any direction.

Inserting Rows and Columns
To insert a blank row above an existing table row,

1 Right-click any cell in the row (including the row header).

2 From the resulting pop-up menu, select Insert Row.

To insert a blank decision column to the left of an existing decision column,

1 Right-click any cell in the existing decision column (including the column
header).

2 From the resulting pop-up menu, select Insert Column.

Moving Rows and Columns
To move a condition or action row up or down:

1 Click the row header to select the row.

2 Drag the row to a new position.

The Truth Table Editor renumbers the rows automatically.

To move a decision column up or down:

1 Click the column header to select the column.

2 Drag the column to a new position.

The Truth Table Editor renumbers the decision columns automatically.

12-74

Truth Table Editor Operations

Printing Tables

Print makes a printed copy or an online viewable copy (HTML
file) of the truth table.

Selecting and Deselecting Table Elements

• To select a cell for editing, click the cell.

• To select text in a cell, click and drag the cursor over the text.

• To select a row, click the header for the row.

• To select a decision column in the Condition Table, click the column
header (D1, D2, and so on).

• To deselect a selected cell, row, or column, press Esc, or click another table,
cell, row, or column.

Undoing and Redoing Edit Operations

Select the Undo tool or press Ctrl+Z to reverse the effects of
the preceding operation.

Select the Redo tool or press Ctrl+Y to reverse the effects of the
most recently undone edit operation.

Viewing the Stateflow Diagram for the Truth Table

Go to Diagram Editor displays the current truth table function
in its native Stateflow diagram.

Searching and Replacing Text in Truth Tables
You can use the Search & Replace tool in Stateflow to search for text in the
Description, Condition, and Action columns of a truth table and replace it
with a substitute string. For example, you can search the model for the string
x is equal to and replace it with the string x equals with the following
procedure:

12-75

12 Truth Table Functions

1 In the Stateflow diagram editor, select Search & Replace from the Tools
menu.

2 In the resulting Search & Replace window, enter the text x is equal to
in the Search field, and the text x equals in the Replace field.

3 Select the Search button.

You see something like the following in the Search & Replace window:

Notice that in the Viewer pane of the Search & Replace window the first
occurrence of the string x is equal to is highlighted normally and the
remaining matches are highlighted lightly.

4 Select Replace to replace the first match with x equals.

5 Select Replace All to replace all matches in the model (not just in the
truth table) with x equals.

12-76

Truth Table Editor Operations

Note The Search & Replace tool is fully described in “Using the Stateflow
Search & Replace Tool” on page 16-12.

Using Row and Column Tooltip Identifiers
Stateflow gives you row and column header tooltips to aid truth table
navigation when you are scrolling to other columns or rows when you are
editing a large truth table. When you place your mouse cursor over row or
column headers, the following tooltips appear:

Table Row or Column Tooltip

Condition Condition row Condition entered for this
row

Condition Decision column (D1,
D2,...)

Row or label entered
for this decision in the
Actions row

Condition Actions row Actions: specify a row
from the Action Table

Action Any row Description entered for
this action

12-77

12 Truth Table Functions

12-78

13

Using Embedded MATLAB
Functions

You can add Embedded MATLAB functions to Stateflow charts. Embedded
MATLAB functions use a rich subset of the MATLAB language that generates
efficient C code and also meets the strict memory and data type requirements
of embedded target environments. In this way, Embedded MATLAB functions
bring the power of MATLAB into Stateflow diagrams.

To learn how to use Embedded MATLAB functions in Stateflow charts, see
the following sections:

Introduction to Embedded MATLAB
Functions (p. 13-3)

Introduction to Embedded MATLAB
functions through an example that
shows you how to use them in
Stateflow

Building a Simulink Model with
a Stateflow Embedded MATLAB
Function (p. 13-5)

Procedure for building a Simulink
model with a Stateflow diagram
that calls an Embedded MATLAB
function

Programming a Stateflow Embedded
MATLAB Function (p. 13-11)

Procedure for programming an
example Embedded MATLAB
function that gives you an overview
of program syntax, local data, and
callable functions

Debugging a Stateflow Embedded
MATLAB Function (p. 13-15)

Procedure for debugging an example
Embedded MATLAB function with
its own debugging tools

13 Using Embedded MATLAB Functions

Model Coverage for an Embedded
MATLAB Function (p. 13-22)

Interpretation of the results of a
coverage report that you generate
for an example model

Working with Structures and Bus
Signals in Stateflow Embedded
MATLAB Functions (p. 13-37)

Explains how to define structures
and interface with bus signals in
Embedded MATLAB functions in
Stateflow charts

13-2

Introduction to Embedded MATLAB Functions

Introduction to Embedded MATLAB Functions
Embedded MATLAB functions allow you to add MATLAB functions to a
Stateflow chart. This capability is useful for coding algorithms that are
better expressed in the textual language of MATLAB than in the graphical
language of Stateflow. Embedded MATLAB functions work with a subset of
the MATLAB language called the Embedded MATLAB subset, which provides
optimizations for generating efficient, production-quality C code for embedded
applications. For more information, see “Working with Embedded MATLAB”.

Here is an example of a Simulink model with a Stateflow chart that contains
an Embedded MATLAB function:

13-3

13 Using Embedded MATLAB Functions

You will build this model in “Building a Simulink Model with a Stateflow
Embedded MATLAB Function” on page 13-5.

Note in this example that the Embedded MATLAB function can call any of
the following types of functions:

• Subfunctions

Subfunctions are defined in the body of the Embedded MATLAB function.
In the preceding example, avg is a subfunction. See “Calling Subfunctions”
in the Embedded MATLAB documentation.

• Embedded MATLAB run-time library functions

Embedded MATLAB run-time library functions are a subset of the
functions that you can call in MATLAB. They generate C code for building
targets that conform to the memory and data type requirements of
embedded environments. In the preceding example, length, sqrt, and
sum are examples of Embedded MATLAB run-time library functions.
See “Calling Embedded MATLAB Run-Time Library Functions” in the
Embedded MATLAB documentation.

• Stateflow functions

Graphical, truth table, and other Embedded MATLAB functions can be
called from an Embedded MATLAB function in a Stateflow chart.

• Some MATLAB functions

Functions that cannot be resolved as subfunctions, Embedded MATLAB
run-time library functions, or Stateflow functions are resolved in the
MATLAB workspace. These functions do not generate code; they execute
only in the MATLAB workspace during simulation of the model. See
“Calling MATLAB Functions” in the Embedded MATLAB documentation.

• Fixed-Point Toolbox run-time library functions

For more information on fixed-point support in Embedded MATLAB, refer
to “Working with the Fixed-Point Embedded MATLAB Subset” in the
Fixed-Point Toolbox documentation.

13-4

Building a Simulink Model with a Stateflow Embedded MATLAB Function

Building a Simulink Model with a Stateflow Embedded
MATLAB Function

Embedded MATLAB functions are special Stateflow functions that use the
Embedded MATLAB Language, a rich subset of the MATLAB programming
language. This section takes you through the steps of creating a Simulink
model with a Stateflow block that calls two Embedded MATLAB functions,
meanstats and stdevstats. meanstats calculates a mean and stdevstats
calculates a standard deviation for the values in vals and outputs them to the
Stateflow data mean and stdev, respectively. Use the following steps to create
the model and learn how to use embedded MATLAB functions in Stateflow.

1 Create a new Simulink model with the following blocks:

2 Save the model as call_stats_function_stateflow.

3 In the Simulink model, double-click the Stateflow block to open the
Stateflow Editor.

13-5

13 Using Embedded MATLAB Functions

4 In the Stateflow Editor, drag two Embedded MATLAB functions into the
empty Stateflow chart using this icon from the tool palette:

A text field with a flashing cursor appears in the middle of each Embedded
MATLAB function.

5 Label each function as shown:

As with other Stateflow functions, you should label an Embedded MATLAB
function with its signature, using the following syntax:

return_value = function_name (argument1, argument2,...)

Each argument and the return value can be a scalar, vector, or matrix
of values. A matrix is a two-dimensional array of values. A vector is a
matrix with a row or column dimension of 1. Multiple return values are
not allowed.

13-6

Building a Simulink Model with a Stateflow Embedded MATLAB Function

6 In the Stateflow chart, draw a default transition into a terminating junction
with the following condition action:

{mean = meanstats(invals);
stdev = stdevstats(invals);}

The Stateflow chart should look like this:

7 In the Stateflow chart, double-click the function meanstats to edit its
function body in the Embedded MATLAB Editor.

8 In the Embedded MATLAB Editor, select Tools > Model Explorer.

The Model Explorer window appears:

13-7

13 Using Embedded MATLAB Functions

The function meanstats is highlighted in the Model Hierarchy pane (left).
The Contents pane (right) displays the input argument vals and output
argument meanout. Both are scalars of type double by default.

9 Double-click the vals row under the Size column to set the size of vals to 4.

10 Back in the Stateflow chart, double-click the function stdevstats and
repeat steps 8 and 9.

11 Back in the Model Hierarchy pane of the Model Explorer, select Chart
and add the following data:

Name Scope Size

invals Input from Simulink 4

mean Output to Simulink Scalar (no change)

stdev Output to Simulink Scalar (no change)

You should now see the following data in the Model Explorer:

13-8

Building a Simulink Model with a Stateflow Embedded MATLAB Function

After you add the data invals, mean, and stdev to the Stateflow chart,
the corresponding input and output ports appear on the Stateflow block
in Simulink.

12 Connect the Constant block and the Display block to the ports of the
Stateflow block and save the model.

13-9

13 Using Embedded MATLAB Functions

The section “Debugging a Stateflow Embedded MATLAB Function” on page
13-15 shows you how to program the functions meanstats and stdevstats.

13-10

Programming a Stateflow Embedded MATLAB Function

Programming a Stateflow Embedded MATLAB Function
You program an Embedded MATLAB function with the Embedded MATLAB
language, a rich subset of MATLAB, as described in “Working with Embedded
MATLAB” in the Embedded MATLAB documentation. To program the
functions meanstats and stdevstats that you created in “Building a
Simulink Model with a Stateflow Embedded MATLAB Function” on page
13-5, follow these steps:

1 Open the Stateflow chart in the modelcall_stats_function_stateflow.

2 In the Stateflow chart, open the Embedded MATLAB function meanstats.

The Embedded MATLAB Editor appears with the function header as
shown.

This function header is taken from the label that you added to the function
in the Stateflow chart. You can edit it directly in the Embedded MATLAB
Editor and your changes will be reflected in the Stateflow diagram editor
when you close the window or select the Update Diagram tool in the editor
toolbar:

3 After the function header, enter a line space and the following comment
lines:

% Calculates a statistical mean for vals

4 Now enter the following statement:

eml.extrinsic('plot');

The function plot is a MATLAB function that is not supported by the
Embedded MATLAB subset. To call unsupported MATLAB functions, you
must first declare them to be extrinsic, as described in “Calling MATLAB
Functions” in the Embedded MATLAB documentation.

13-11

13 Using Embedded MATLAB Functions

5 Add the line:

len = length(vals);

The function length is an example of a built-in MATLAB function that is
supported by the Embedded MATLAB subset. You can call this function
directly to return the vector length of its argument vals. When you build
a simulation target, the function length is implemented with generated
C code. MATLAB functions supported by Embedded MATLAB appear
in “Embedded MATLAB Run-Time Function Library” in the Embedded
MATLAB documentation.

The variable len is an example of implicitly declared local data. It has the
same size and type as the value assigned to it — the value returned by the
function length, a scalar double. You can change the size and type of
len as described in “Creating Local Variables Implicitly” in the Embedded
MATLAB documentation.

Embedded MATLAB treats implicitly declared local data as temporary
data. It comes into existence only when the function is called and
disappears when the function exits. You can declare local data for an
Embedded MATLAB function to be persistent by using the persistent
construct (see “Declaring Persistent Variables” in the Embedded MATLAB
documentation).

6 Enter the following line to calculate the value of mean:

meanout = avg(vals,len);

meanstats stores the mean of vals in the Stateflow data meanout . Since
these data are defined for the parent Stateflow chart, you can use them
directly in the Embedded MATLAB function.

Two-dimensional arrays with a single row or column of elements are
treated as vectors or matrices in Embedded MATLAB functions. For
example, in meanstats, the argument vals is a four element vector. You
can access the fourth element of this vector with the matrix notation
vals(4,1) or the vector notation vals(4).

The Embedded MATLAB function uses the functions avg and sum to
compute the value of mean. sum is an Embedded MATLAB run-time library

13-12

Programming a Stateflow Embedded MATLAB Function

functions. avg is a subfunction that you define later. When resolving
function names, Embedded MATLAB functions look for subfunctions first,
followed by Embedded MATLAB run-time library functions.

Note If you call a function that Embedded MATLAB cannot resolve as a
subfunction or Embedded MATLAB runtime library function, you must
declare the function to be extrinsic so it can be resolved as a MATLAB
function, as described in “Calling MATLAB Functions” in the Embedded
MATLAB documentation.

7 Enter the following line to plot the input values in vals against their
vector index.

plot (vals,'-+');

Recall that you declared plot to be an extrinsic function because it is not
supported in the Embedded MATLAB runtime library. When Embedded
MATLAB encounters an extrinsic function, it sends the call to MATLAB for
execution during simulation.

8 Now, define the subfunction avg, as follows:

function mean = avg(array,size)
mean = sum(array)/size;

The header for avg defines two arguments, array and size, and a single
return value, mean. The subfunction avg calculates the average of the
elements in array by dividing their sum by the value of argument size.

For more information on creating subfunctions, see “Subfunctions” in
MATLAB online documentation.

The complete code for the Embedded MATLAB function meanstats looks
like this:

function meanout = meanstats(vals)

% Calculates a statistical mean for vals

13-13

13 Using Embedded MATLAB Functions

eml.extrinsic('plot');
len = length(vals);
meanout = avg(vals,len);

plot(vals,'-+');

function mean = avg(array,size)
mean = sum(array)/size;

9 Save the model (call_stats_function_stateflow).

10 Back in the Stateflow chart, open the second Embedded MATLAB function
stdevstats and add code to compute the standard deviation of the values
in vals. The complete code should look like this:

function stdevout = stdevstats(vals)

%Calculate the standard deviation for vals

len = length(vals);
stdevout = sqrt(sum(((vals-avg(vals,len)).^2))/len);

function mean = avg(array,size)
mean = sum(array)/size;

13-14

Debugging a Stateflow Embedded MATLAB Function

Debugging a Stateflow Embedded MATLAB Function
The following topics explain how to debug the Embedded MATLAB function
meanstats in its Stateflow diagram.

• “Checking Embedded MATLAB Functions for Syntax Errors” on page 13-15
— Describes the way that Stateflow checks Embedded MATLAB functions
for syntactical errors.

• “Run-Time Debugging for Embedded MATLAB Functions” on page 13-17
— Executes the model and tests the Embedded MATLAB unction with
different input data values.

Checking Embedded MATLAB Functions for Syntax
Errors
Before you can build a simulation application for a model, you need to fix
syntax errors. Use the following steps to check the Embedded MATLAB
function meanstats for syntax violations:

1 Open the the Embedded MATLAB function meanstats inside the Stateflow
chart in the call_stats_function_stateflow model that you updated in
“Programming a Stateflow Embedded MATLAB Function” on page 13-11.

The Embedded MATLAB Editor uses the MATLAB M-Lint Code Analyzer
to automatically check your function code for errors and recommend
corrections (see “Using M-Lint with Embedded MATLAB” in Embedded
MATLAB documentation).

2 In the Embedded MATLAB Editor, select the Build tool to build a
simulation application for the example Simulink model.

If there are no errors or warnings, the Builder window appears and reports
success. Otherwise, it lists errors. For example, if you change the name
of subfunction avg to a nonexistent subfunction aug in meanstats, the
Builder reports the following errors:

13-15

13 Using Embedded MATLAB Functions

Each error message appears with a red button. The selected error message
displays diagnostic information in the bottom pane.

3 Click the link in the diagnostic message to display the offending line of
code, as shown.

4

13-16

Debugging a Stateflow Embedded MATLAB Function

Run-Time Debugging for Embedded MATLAB
Functions
You use simulation to test your Embedded MATLAB functions for run-time
errors that are not detectable by Stateflow diagnostics. When simulate your
model, Simulink tests of your Embedded MATLAB functions for missing or
undefined information and possible logical conflicts as described in “Checking
Embedded MATLAB Functions for Syntax Errors” on page 13-15. If no errors
are found, Stateflow begins the simulation of your model.

Use the following procedure to simulate and debug the meanstats Embedded
MATLAB function during run-time conditions:

1 In the Embedded MATLAB Editor, click the dash (-) character in the left
margin of line 6.

A small red ball appears next to line 6, indicating that you set a breakpoint.

13-17

13 Using Embedded MATLAB Functions

2 Click the Start Simulation tool to begin simulating the model.

If you get any errors or warnings, make corrections before you try to
simulate again. Otherwise, simulation pauses when execution reaches
the breakpoint you set. This is indicated by a small green arrow in the
left margin as shown.

13-18

Debugging a Stateflow Embedded MATLAB Function

3 Click the Step tool to advance execution one line to line 7.

Notice that line 7 calls the subfunction avg. If you click Step here, execution
advances to line 9, past the execution of the subfunction avg. In order to
track execution of the lines in the subfunction avg, you need to click the
Step In tool.

4 Click the Step In tool to advance execution to the first line of the called
subfunction avg.

Once you are in the subfunction, you can advance through the subfunction
one line at a time with the Step tool. If the subfunction calls another
subfunction, use the Step In tool to step into it. If you want to continue
through the remaining lines of the subfunction and go back to the line after

the subfunction call, click the Step Out tool .

5 Click the Step tool to execute the only line in the subfunction avg.

When the subfunction avg finishes its execution, you see a green arrow
pointing down under its last line.

13-19

13 Using Embedded MATLAB Functions

6 Click the Step tool to return to the function meanstats.

Execution advances to the line after to the call to the subfunction avg,
line 9.

7 To display the value of the variable len, place the mouse cursor over the
text len in line 6 for at least a second.

The value of len appears adjacent to the cursor.

You can display the value for any data in the Embedded MATLAB block
function in this way, no matter where it appears in the function. For
example, you can display the values for the vector vals by placing the
cursor over it as an argument to the function length in line 6, or as an
argument in the function header.

You can also report the values for Embedded MATLAB block function data
in the MATLAB window during simulation. When you reach a breakpoint,
the debug>> command prompt appears in the MATLAB window (you might
have to press Enter to see it). At this prompt you can inspect data defined
for the Embedded MATLAB block by entering the name of the data as
shown in the following example:

debug>> len
len =

4
debug>>

As another debugging alternative, you can display the execution result
of an Embedded MATLAB function line by omitting the terminating
semicolon. If you do, execution results for the line are echoed to the
MATLAB window during simulation.

8 Click the Continue tool to leave the function until it is called again and
the breakpoint on line 6 is reached.

At any point in a function, you can advance through the execution of the
remaining lines of the function with the Continue tool. If you are at the end
of the function, clicking the Step tool accomplishes the same thing.

13-20

Debugging a Stateflow Embedded MATLAB Function

9 Click the breakpoint at line 6 to remove it and click the green arrow to
complete the simulation.

In the Simulink window, the computed values of mean and stdev now
appear in the Display blocks.

13-21

13 Using Embedded MATLAB Functions

Model Coverage for an Embedded MATLAB Function
The Model Coverage tool in Simulink reports model coverages for the
decisions and conditions of Embedded MATLAB functions in Stateflow. For
example, the Embedded MATLAB function if statement

if (x > 0 || y > 0)
reset = 1;

contains a decision with two conditions (x > 0 and y > 0). You use the
Model Coverage tool for Embedded MATLAB functions to make sure that
all decisions and conditions are taken during simulation of the model.

See the following topics for a description of model coverage for an example
Embedded MATLAB function:

• “Types of Model Coverage in Embedded MATLAB Functions” on page 13-23
— Lists the types of elements in an Embedded MATLAB function that
receive model coverage during simulation.

• “Creating a Model with Embedded MATLAB Function Decisions” on page
13-23 — Shows you an example model that you use to examine model
coverage for Embedded MATLAB functions.

• “Understanding Embedded MATLAB Function Model Coverage” on page
13-28 — Describes the individual coverages for the Model Coverage report
of the example Embedded MATLAB function.

For a description of model coverage for other Stateflow objects, see
“Understanding Model Coverage for Stateflow Charts” on page 15-44.

Note The Model Coverage tool requires a Simulink Verification and
Validation license.

13-22

Model Coverage for an Embedded MATLAB Function

Types of Model Coverage in Embedded MATLAB
Functions
During simulation, the following Embedded MATLAB block function
statements are tested for Decision Coverage:

• function header — Decision coverage is 100% if the function or subfunction
is executed.

• if— Decision coverage is 100% if the if expression evaluates to true at
least once and false at least once.

• switch— Decision coverage is 100% if every switch case is taken, including
the fall-through case.

• for— Decision coverage is 100% if the equivalent loop condition evaluates
to true at least once, and false at least once.

• while — Decision coverage is 100% if the equivalent loop condition
evaluates to true at least once, and false at least once.

During simulation, the following logical conditions are tested for Condition
Coverage and MCDC in the Embedded MATLAB block function:

• if statement conditions

• while statement conditions, if present

Creating a Model with Embedded MATLAB Function
Decisions
In this topic you examine an example model you can use to generate a model
coverage report for two Embedded MATLAB functions in Stateflow. The
following model is named intersecting_rectangles. It contains a single
Stateflow block with output data sent to a Scope block as shown.

13-23

13 Using Embedded MATLAB Functions

The preceding Stateflow diagram has a state with a default transition and
entry and during actions. The state executes its entry action the first time

13-24

Model Coverage for an Embedded MATLAB Function

that it is entered for the first time sample. Each succeeding time sample calls
the during action of the active state.

The entry and during actions of state A call the Embedded MATLAB function
run_intersect_test, which appears as follows in the Embedded MATLAB
Editor window:

run_intersect_test calls the function rect_intersect with two rectangle
arguments that each consist of coordinates for the lower left corner of the
rectangle (origin), and its width and height. The first rectangle is a test
rectangle, and the second is a stationary rectangle. The coordinates for the
origin of the test rectangle are represented by the Stateflow data x1 and y1,
which are both initialized to -1. This means that x1 and y1 are 0 for the first
sample. The progression of rectangle arguments during simulation is as
follows:

13-25

13 Using Embedded MATLAB Functions

In the preceding display, the stationary rectangle is shown in bold with a
lower left origin of (2,4) and a width and height of 2. At time t = 0, the
first test rectangle has an origin of (0,0) and a width and height of 2. For
each succeeding sample, the origin of the test rectangle is incremented by
(1,1). The rectangles at sample times t = 2, 3, and 4 intersect with the
test rectangle.

The function rect_intersect, as shown, checks to see if two rectangles
intersect.

13-26

Model Coverage for an Embedded MATLAB Function

rect_intersect receives the two rectangle arguments from
run_intersect_test. It first calculates horizontal (x) coordinates for the
left and right sides, and vertical (y) values for the top and bottom sides for
each rectangle and compares them in the nested if-else decisions shown.
The function returns a logical value of 1 if the rectangles intersect and 0 if
they do not.

Scope output during simulation, which plots the return value against the
sample time, confirms the intersecting rectangles for sample 2, 3, and 4.

13-27

13 Using Embedded MATLAB Functions

Understanding Embedded MATLAB Function Model
Coverage
Model coverage reports are generated during simulation if you specify them
(see “Making Model Coverage Reports” on page 15-45). When simulation is
finished, the model coverage report appears in a browser window. After the
summary for the model, the Details section reports on each of the parts of the
model. Model coverage for the parts of the example model in “Creating a
Model with Embedded MATLAB Function Decisions” on page 13-23 appears
in the following order:

• Model "intersecting_rectangles"

• Subsystem "Chart"

• Chart "Chart"

- Function rect_intersect

#1: function out = rect_intersect(rect1,rect2)

#14: if (top1 < bottom2 || top2 < bottom1)

#17: if (right1 < left2 || right2 < left1

- Function "run_intersect_test"

#1: function out = run_intersect_test

The reports for the Embedded MATLAB functions rect_intersect and
run_intersect_test appear in alphabetical order as part of the report on

13-28

Model Coverage for an Embedded MATLAB Function

their parent, the Stateflow block Chart. The reports on individual decisions
for each function appear in numerical line order. Line numbers are indicated
by the # character.

The following subtopics examine the model coverage report for the example
model in reverse order of the report. Reversing the order helps you make
sense of the summary information that appears at the top of each section.

Model Coverage for Embedded MATLAB Function
run_intersect_test
Model coverage for the Embedded MATLAB function run_intersect_test,
which sends test rectangles to the function rect_intersect, appears in the
model coverage report as shown.

13-29

13 Using Embedded MATLAB Functions

The report on run_intersect_test begins with the function name
run_intersect_test, which links to an Embedded MATLAB Editor for
the function. Following the name is a link to the model coverage report for
the parent of run_intersect_test, the Stateflow chart Chart. Coverage
continues with a summary of the coverage metrics for the function followed by
a code listing. The line number for the first line of the listing is highlighted in
bold red, which is actually a link to an analysis for that decision below.

The first line of every function receives coverage analysis indicative of the
decision to run the function. Its coverage here indicates that the function
run_intersect_test executed 8 out of 8 times for the samples taken at
0 through 7 seconds. Because this is the only decision in the function
run_intersect_test, coverage for it in the metrics table above indicates the
occurrence of 1 out of 1 possible outcomes. In this case, the only possible
outcome is function execution. In other words, the function was executed
during simulation.

Coverage for Embedded MATLAB Function rect_intersect
Model coverage for the Embedded MATLAB function rect_intersect, which
tests rectangles for intersection, appears first in the model coverage report
as shown.

13-30

Model Coverage for an Embedded MATLAB Function

The coverage metrics for rect_intersect include Decision, Condition, and
MCDC coverage. These are best understood after you examine the coverage
for the decisions in rect_intersect highlighted in the listing below.

The listing for rect_intersect includes three highlighted line numbers.
The first line is highlighted as the decision on whether or not to execute the
function. Highlighted line numbers 14 and 17 indicate decisions in a nested
if-else statement. Notice that the condition right1 < left2 in line 17

13-31

13 Using Embedded MATLAB Functions

is highlighted in red. This means that this condition did not test both the
true and false possible outcomes for this decision during simulation. Exactly
which of the outcomes was not tested is answered by the metrics for the
decision in line 17. The metrics for line 17 and the remaining decisions appear
below listed in numerical line order, and are easily accessed through the line
number links in the listing.

Coverage for Line 1. Coverage metrics for line 1 appear directly below the
listing for rect_intersect as shown.

The first line of every function receives coverage analysis indicative of
the decision to run the function in response to a call. The preceding table
indicates that rect_intersect executed. Coverage for this decision, which
is equivalent to decision D1 in the metrics table for rect_intersect, is
therefore 100%.

Coverage for Line 14. Coverage metrics for line 14 appear directly below
the coverage metrics for line 1 as shown.

13-32

Model Coverage for an Embedded MATLAB Function

The Decisions analyzed table indicates that there are two possible outcomes
for the decision in line 14: false and true. 5 of 8 times the decision evaluated
false, and the remaining times (3) it evaluated true. Because both the true
and false outcome occurred during simulation, Decision Coverage is 100%.

The following Conditions analyzed table sheds some light on the decision in
line 14. Because this decision consists of two conditions linked by a logical or
(||) operation, only one condition must evaluate true for the decision to be
true. Also, if the first condition evaluates to true, there is no need to evaluate
the second condition. The first condition, top1 < bottom2, was evaluated 8
times, and was true twice. This means that it was necessary to evaluate the
second condition only 6 times. In only one case was it true, which brings the
total of the true occurrence for the decision to 3 as reported in the Decisions
analyzed table.

13-33

13 Using Embedded MATLAB Functions

MCDC coverage looks for decision reversals that occur because one condition
outcome changes from T to F or from F to T. The table identifies all possible
combinations of outcomes for the conditions that lead to a reversal in the
decision. The character x is used to indicate a condition outcome that is
irrelevant to the decision reversal. Reversing condition outcomes that are not
achieved during simulation are marked with a set of parentheses. There
are no parentheses, so all decision reversing outcomes occurred, and MCDC
Coverage is complete for this decision.

Coverage for rect_intersect Line 17. Coverage metrics for line 17 appear
directly below the coverage metrics for line 14, as shown.

13-34

Model Coverage for an Embedded MATLAB Function

The line 17 decision if (right1 < left2 || right2 < left1) is nested in
the if statement of the line 14 decision and is evaluated only if the line 14
decision is false. Because the line 14 decision evaluated false 5 times, line 17
is evaluated 5 times, 3 of which were false. Because both the true and false
outcomes were achieved, Decision Coverage for line 17 is 100%.

Because line 17, like line 14, has two conditions related by a logical OR
operator (||), condition 2 is tested only if condition 1 is false. Because
condition 1 tests false 5 times, condition 2 is tested 5 times. Of these, condition
2 tests true 2 times and false 3 times, which accounts for the two occurrences
of the true outcome for this decision.

Because the first condition of the line 17 decision does not test true, both
outcomes did not occur for that condition, and the Condition Coverage for the
first condition is highlighted with a rose color. Because the first condition of
the line 17 decision does not test true, MCDC coverage is also highlighted
in the same way for a decision reversal based on the true outcome for that
condition.

Coverage for All rect_intersect Lines. Reviewing the coverage report
for each line of rect_intersect in the previous topics makes sense of the
coverage metrics reported at the beginning of the model coverage report for
rect_intersect, which is as shown.

13-35

13 Using Embedded MATLAB Functions

Reflecting on the model coverage reports for each line of rect_intersect, you
can draw the following conclusions:

• There are five decision outcomes reported for rect_intersect in the line
reports: one for line 1 (execute), two for line 14 (true and false), and two
for line 17 (true and false). The decision coverage for each line shows
100% coverage. This means that decision coverage for rect_intersect is
5 of 5 or 100%.

• There are four conditions reported for rect_intersect in the line reports.
Lines 14 and 17 each have two conditions, and each condition has two
condition outcomes (true and false), for a total of eight condition outcomes
in rect_intersect. All conditions tested for both the true and false
outcome, except for the first condition of line 17 (right1 < left2). This
means that condition coverage for rect_intersect is 7 of 8 or 88%.

• The MCDC tables for each line list two cases of decision reversal for
each condition. Only the decision reversal from changing the condition 1
outcome from true to false did not occur during simulation. This means
that 3 of 4 or 75% of the possible reversal cases were tested for during
simulation. Therefore, only three of a possible four reversals were observed
and coverage is 75%.

13-36

Working with Structures and Bus Signals in Stateflow Embedded MATLAB Functions

Working with Structures and Bus Signals in Stateflow
Embedded MATLAB Functions

This section explains how to define structures in Stateflow Embedded
MATLAB functions that you can interface to Simulink bus signals, or define
as local or persistent variables.

• “About Structures in Stateflow Embedded MATLAB Functions” on page
13-37

• “Defining Structures in Stateflow Embedded MATLAB Functions” on
page 13-37

About Structures in Stateflow Embedded MATLAB
Functions
Embedded MATLAB supports MATLAB structures. You can create structures
in top-level Embedded MATLAB functions in Stateflow charts to interface
with Simulink bus signals at input and output ports. Simulink buses appear
inside the Embedded MATLAB function as structures; structure outputs from
the Embedded MATLAB function appear as buses.

You can also create structures as local and persistent variables in top-level
functions and subfunctions of Embedded MATLAB functions in Stateflow.

Defining Structures in Stateflow Embedded MATLAB
Functions
This section describes how to define structures in Stateflow Embedded
MATLAB functions.

• “Rules for Defining Structures in Stateflow Embedded MATLAB Functions”
on page 13-38

• “Defining Structure Inputs and Outputs to Interface with Bus Signals” on
page 13-38

• “Defining Local and Persistent Structure Variables” on page 13-40

13-37

13 Using Embedded MATLAB Functions

Rules for Defining Structures in Stateflow Embedded MATLAB
Functions
Follow these rules when defining structures in Stateflow Embedded MATLAB
functions:

• For each structure input or output in an Embedded MATLAB function in
Stateflow, you must define a Simulink.Bus object in the base workspace to
specify its type to Simulink.

• Embedded MATLAB structures cannot inherit their type from Simulink.

• Embedded MATLAB Function blocks support nonvirtual buses only
(see “Virtual and Nonvirtual Buses” in the Simulink User’s Guide
documentation).

• Structures cannot have scopes defined as Parameter or Constant.

Defining Structure Inputs and Outputs to Interface with Bus
Signals
When you create structure inputs in Stateflow Embedded MATLAB functions,
Embedded MATLAB determines the type, size, and complexity of the structure
from the Simulink input signal. When you create structure outputs, you must
define their type, size, and complexity in the Embedded MATLAB function.

You can connect Embedded MATLAB structure inputs and outputs to any
Simulink bus signal, including:

• Simulink blocks that output bus signals— such as Bus Creator blocks

• Simulink blocks that accept bus signals as input — such as Bus Selector
and Gain blocks

• S-Function blocks

• Other Embedded MATLAB functions

To define structure inputs and outputs in Stateflow Embedded MATLAB
functions, follow these steps:

1 Create a Simulink bus object in the base workspace to specify the properties
of the structure you will create in the Stateflow Embedded MATLAB
function.

13-38

Working with Structures and Bus Signals in Stateflow Embedded MATLAB Functions

For information about how to create Simulink bus objects, see
Simulink.Bus in the Simulink Reference.

2 From the Embedded MATLAB Editor menu bar, open the Model Explorer
by selecting Tools > Model Explorer.

3 In the Model Explorer, follow these steps:

a In the Model Hierarchy pane, select the Embedded MATLAB function in
your Stateflow chart.

b Add a data object, as described in “Adding Data Using the Model
Explorer” on page 7-27.

The Model Explorer adds a data object and opens a Properties dialog
box in its right-hand Dialog pane.

c In the Properties dialog box, enter the following information in the
General tab fields:

Field What to Specify

Name Enter a name for referencing the structure in the
Embedded MATLAB function. This name does not have to
match the name of the bus object in the base workspace.

Scope Select Input or Output.

Data
type
mode

Select Bus Object.

Bus
object

Enter the name of the Simulink.Bus object in the base
workspace that defines the structure.

d To add or modify Simulink.Bus objects, click the Edit button to bring up
the Simulink Bus Types Editor (see “Using Bus Objects” in the Simulink
User’s Guide).

e Click Apply.

4 If your structure is an output (has scope of Output), define the output
implicitly in the Embedded MATLAB function to have the same type,
size, and complexity as its Simulink.Bus object, as described in “About
Embedded MATLAB Structures” in Embedded MATLAB documentation.

13-39

13 Using Embedded MATLAB Functions

Defining Local and Persistent Structure Variables
You can define structures as local or persistent variables inside Embedded
MATLAB functions (see “Types of Embedded MATLAB Structures” in the
Simulink Reference documentation).

13-40

14

Building Targets

Stateflow generates code that lets you execute Stateflow diagrams on target
computers. Stateflow builds a special simulation target (sfun) that lets you
simulate your Stateflow application in Simulink. Stateflow also works with
Simulink to let you build a Real-Time Workshop (RTW) target application for
running Stateflow and Simulink applications on other computers. Finally,
Stateflow lets you build custom targets from Stateflow applications only.

Overview of Stateflow Targets
(p. 14-3)

Describes how Stateflow and its
companion tools can build targets for
virtually any computer.

How Do You Build a Target? (p. 14-5) Explains the process of building a
target for models with Stateflow
blocks.

How Does Stateflow Build into
Targets? (p. 14-7)

Describes how Stateflow blocks
contribute to the building of targets.

Adding Stateflow Targets (p. 14-8) Tells you how to add Stateflow
targets to a Simulink model.

Configuring a Simulation Target for
Stateflow (p. 14-10)

Tells you how to configure the
simulation target (named sfun) for a
Simulink model to build a simulation
application for the model.

Configuring Real-Time Workshop for
Stateflow (p. 14-13)

Tells you how to configure the RTW
target (named rtw) for a Simulink
model to build an embedded
application for the model.

14 Building Targets

Configuring a Custom Target in
Stateflow (p. 14-22)

Tells you how to configure a custom
target (named other than sfun
or rtw) for a Simulink model to
generated code for the Stateflow
diagrams in the model.

Integrating Custom Code with
Stateflow Targets (p. 14-27)

Tells you how to configure the
custom code you include in the target
you build. Also tells you how to
invoke Stateflow graphical functions
from your custom code.

Starting the Build (p. 14-34) Describes how to start building
a simulation target (sfun) or a
Real-Time Workshop target (rtw).

Parsing Stateflow Diagrams
(p. 14-36)

The parser evaluates the graphical
and nongraphical objects in each
Stateflow machine against the
supported Stateflow notation and
the action language syntax. This
section describes the Stateflow
parser and how its messages appear.

Resolving Event, Data, and Function
Symbols (p. 14-42)

Describes the process Stateflow
uses when attempting to resolve
undefined data, event, and graphical
function symbols when you choose to
simulate the model, build a target,
or generate code.

Error Messages (p. 14-44) Describes the error messages you
might receive when you build a
target or parse a diagram.

Generated Files (p. 14-47) Describes the files that Stateflow
generates when you generate code
for a target or build the target.

14-2

Overview of Stateflow Targets

Overview of Stateflow Targets
This section gives you an overview understanding of what targets are in
Stateflow and how you use them in the following topics:

• “What Is a Simulink RTW Target?” on page 14-3 — Describes the type of
targets you can build from a model in Simulink.

• “What Is a Stateflow Target?” on page 14-3 — Describes the type of targets
you can use to configure Stateflow contributions to a target you build for a
library model in Simulink.

What Is a Simulink RTW Target?
A Simulink RTW target is a container for specifying the generated code,
custom code, and build type used in building an application or producing
generated code for a Simulink model. The model represented by an RTW
target can include non-Stateflow as well as Stateflow blocks. An RTW target
can also run on computers that do not have a floating-point instruction set.
Building an RTW target requires the Real-Time Workshop and Stateflow
Coder.

What Is a Stateflow Target?
A Stateflow target is a container in Stateflow for specifying the generated
code, custom code, and build type used in building an application or producing
generated code from the Stateflow blocks in a Simulink model. There are
three types of Stateflow targets:

• Simulation target (sfun)

The Stateflow simulation target (named sfun) is a container in Stateflow
for specifying the generated code, custom code, and build type used for
simulating Stateflow blocks in a Simulink model. When you build a
simulation target for a Simulink model, the information from a Stateflow
simulation target is combined with the information for the rest of the
model. When you add a Stateflow block to a Simulink model, a Stateflow
simulation target named sfun is added to the model by default.

• Real-Time Workshop (rtw) target

14-3

14 Building Targets

The Stateflow RTW target is used for library models only to specify custom
code options that apply to the library model, but not the main model.
Stateflow blocks in nonlibrary models use the RTW configuration settings
of the parent Simulink model (see “Configuring Stateflow Blocks in
Nonlibrary Models for Real-Time Workshop” on page 14-13). The Stateflow
RTW target is a container in Stateflow for specifying the generated code,
custom code, and build type used for generating code for Stateflow blocks in
Simulink library models. When you build an RTW target for a Simulink
model, the information from a Stateflow RTW target is combined with the
information for the rest of the model. Inputs to and outputs from Stateflow
blocks in a library model can only be resolved when a Stateflow target is
combined with the Simulink target during the build process. Stateflow
RTW targets let you specify target information for the Stateflow blocks in
a library model before the model is used in building an application (see
“Configuring Stateflow Blocks in Library Models for Real-Time Workshop”
on page 14-16).

• Custom targets — A Stateflow custom target (named anything but sfun
or rtw) is a convenience for collecting the generated code for the Stateflow
charts used in a model. After you collect the code, you can use this code at
your own discretion in building your own applications.

14-4

How Do You Build a Target?

How Do You Build a Target?
This section gives an overview to the entire process of building a target
for models with Stateflow blocks. Use the following steps to find the right
procedure for building a target for your model:

1 Add a Stateflow target, if necessary.

You need to add a Stateflow target to the model for any of the following
cases:

• You are configuring the Simulink RTW target for a library model with
Stateflow blocks.

In this case, you need to add an RTW target (named rtw) in Stateflow
or the Model Explorer.

Note You cannot add targets named rtw for Stateflow charts in
nonlibrary models. In this scenario, the Stateflow charts use the RTW
configuration settings of the parent Simulink model (see “Configuring
Stateflow Blocks in Nonlibrary Models for Real-Time Workshop” on page
14-13).

• You want to generate code from the Stateflow blocks in a model with a
custom target.

In this case, you need to add a custom target (named anything but sfun
or rtw) to the model in the Model Explorer.

See “Adding Stateflow Targets” on page 14-8 for instructions on adding a
Stateflow target to the model.

2 Configure the target.

See one of the following sections for the target you build:

• “Configuring a Simulation Target for Stateflow” on page 14-10

• “Configuring Real-Time Workshop for Stateflow” on page 14-13

• “Configuring a Custom Target in Stateflow” on page 14-22

14-5

14 Building Targets

3 Include your own custom code in the target.

This is actually a part of step 2 that requires special attention. You can
include your own custom C code in the target when you configure it. See
“Integrating Custom Code with Stateflow Targets” on page 14-27 for details.

4 Configure the target for the rest of the Simulink model.

The preceding steps configure a target only for the contribution from the
Stateflow blocks in a model. You configure the rest of the model in the
Simulink Configuration Parameters dialog. See the “Configuration
Parameters Dialog Box” in Simulink documentation.

5 Start the build process.

Stateflow automatically builds or rebuilds simulation targets when you
initiate simulation of the Stateflow machine. You must explicitly initiate
the build process for other types of targets. See “Starting the Build” on
page 14-34 for more information.

14-6

How Does Stateflow Build into Targets?

How Does Stateflow Build into Targets?
This topic give you information on how Stateflow blocks contribute to the
building of targets in the following steps:

1 Stateflow parses the charts in the model to ensure that their logic is valid.

2 If any errors are found, Stateflow displays the errors in the Build window
and halts. See “Parsing Stateflow Diagrams” on page 14-36 for more details.

3 If the charts parse without error, Stateflow Coder generates C code from
the charts.

The code generator accepts various options that control the code generation
process. You specify these options when you configure Stateflow for targets.

4 Stateflow Coder generates a makefile to build the generated source code
into an executable program.

The generated makefile can optionally build custom code that you specify
into the target. See “Integrating Custom Code with Stateflow Targets” on
page 14-27 for details.

5 The specified C compiler for MATLAB and a make utility build the code
into an application for the target.

Building Simulink targets requires a C compiler that is supported by
MATLAB. The Microsoft Windows version of Stateflow comes with a C
compiler (lcc.exe) and a make utility (lccmake). Both tools are installed
in the directory matlabroot\sys\lcc. If you do not configure MATLAB to
use any other compiler, Stateflow uses lcc to build targets. For details on
setting up your own C compiler, see “Setting Up Your Own Target Compiler”

14-7

14 Building Targets

Adding Stateflow Targets
This section describes how to add targets from the Stateflow Editor. You can
also create Stateflow targets in the Model Explorer (see “Adding a Target
in the Model Explorer” on page 16-6 for details).

• “Adding Stateflow Custom Targets” on page 14-8

• “Adding Custom Code to Stateflow in Library Models” on page 14-9

Adding Stateflow Custom Targets
You add custom targets in Stateflow when you want to collect the generated
code for Stateflow blocks in a model for building your own applications. To
add custom targets, follow these steps:

1 In the Stateflow Editor, select Target from the Add menu.

The Stateflow Target Builder dialog appears, as shown.

2 In the Target: Name field, enter any name except the reserved names
sfun and rtw, and click OK.

14-8

Adding Stateflow Targets

Adding Custom Code to Stateflow in Library Models
Stateflow charts use the RTW configuration settings of the parent Simulink
model for code generation. However, if you wish to specify custom code options
for Stateflow in a library model, you can add a Stateflow RTW target, as
follows:

1 In the Stateflow Editor, select Target from the Add menu.

The Stateflow Target Builder dialog appears, as shown.

2 In the Target: Name field, enterrtw as the name of the target and click
OK.

Note You cannot create a Stateflow rtw target for nonlibrary models.
Stateflow blocks in nonlibrary models always use the RTW configuration
settings of the parent Simulink model (see “Configuring Stateflow Blocks in
Nonlibrary Models for Real-Time Workshop” on page 14-13).

14-9

14 Building Targets

Configuring a Simulation Target for Stateflow
You can configure your model to simulate the Stateflow blocks in your model
by configuring the Stateflow simulation target (sfun). Any model that
contains one or more Stateflow blocks has a Stateflow simulation target.
When you configure this target and build the model for simulation, this target
configuration is carried into the simulation configuration for the entire model.

To configure the Stateflow simulation target, do the following:

1 From the Stateflow diagram editor Tools menu, select Open Simulation
Target.

The Stateflow Target Builder dialog appears.

2 Select one of the following build options:

• Stateflow Target (incremental) to rebuild only those portions of the
target corresponding to charts that have changed logically since the
last build.

• Rebuild All (including libraries) to rebuild the target, including
chart libraries, from scratch.

14-10

Configuring a Simulation Target for Stateflow

• Make without generating code to invoke the make process without
generating code. This is useful when you have custom source files that
need to be recompiled within a Stateflow incremental build mechanism
that does not detect changes in custom software files.

3 To specify code generation options for a simulation target, select Coder
Options.

The Simulation Coder Options dialog box appears.

4 Select OK or Apply for any or all of the following options:

• Enable debugging/animation -- Enables chart animation and
debugging. Stateflow enables debugging code generation when you use
the debugger to start a model simulation. You can enable or disable
chart animation separately in the debugger. (The Stateflow debugger
does not work with stand-alone and RTW targets. Therefore, Stateflow
and Real-Time Workshop do not generate debugging/animation code for
these targets, even if this option is enabled.)

• Enable overflow detection (with debugging) -- Overflow occurs for
data when a value is assigned to it that exceeds the numeric capacity
of its type. If this check box is selected, Stateflow generates code for
overflow detection of Stateflow data. If cleared, no code is generated for
overflow detection.

The Enable overflow detection (with debugging) option is
particularly important for fixed-point data. See “Overflow Detection for
Fixed-Point Types” on page 9-11.

14-11

14 Building Targets

Note To actually detect overflow in data during simulation, you must
also select the Data Range check box in the Debugger window. See
“Debugging Data Range Violations” on page 15-20 for more details.

• Echo expressions without semicolons — Display run-time output
in the MATLAB Command Window, specifically actions that are not
terminated by a semicolon.

5 Select (check) the Use settings for all libraries option if you want the
settings that you specify for this target to apply to all the Stateflow charts
contributed by library models as well.

6 To specify custom code options for the simulation target, select Target
Options.

See “Integrating Custom Code with Stateflow Targets” on page 14-27
for details on using the simulation target to integrate custom code with
generated code for the Stateflow diagrams in the model.

7 To finish configuring the simulation target, do one of the following:

• Click Apply to apply the selected options

• Click OK to apply the options and close the dialog

• Click Build to build the simulation target.

Note Use the Chart Properties dialog to tell the simulation target
builder to recognize C bitwise operators (~, &, |, ^, >>, and so on) in
action language statements and encode them as C bitwise operations.

14-12

Configuring Real-Time Workshop for Stateflow

Configuring Real-Time Workshop for Stateflow
If you have a Real-Time Workshop (RTW) license, you can configure the
Stateflow blocks in your model to generate code for an RTW target. The RTW
configuration you use depends on whether your model is a normal nonlibrary
model or a library model.

• “Configuring Stateflow Blocks in Nonlibrary Models for Real-Time
Workshop” on page 14-13 — For a nonlibrary model, specify the RTW
configuration for Stateflow in the Simulink Configuration Parameters
dialog.

• “Configuring Stateflow Blocks in Library Models for Real-Time Workshop”
on page 14-16 — For a library model, specify the RTW configuration for
Stateflow by configuring an RTW target in Stateflow.

Configuring Stateflow Blocks in Nonlibrary Models
for Real-Time Workshop
Stateflow blocks in nonlibrary models use the RTW configuration settings of
the parent Simulink model. However, you can specify how to optimize RTW
code generation for Stateflow blocks in nonlibrary models, as follows:

1 In a Simulink window or a Stateflow diagram editor, from the Simulation
menu, select Configuration Parameters.

The Configuration Parameters dialog appears, as shown.

14-13

14 Building Targets

2 Select the Optimization node, as shown.

The Optimization configuration settings appear in the right pane, as shown.

14-14

Configuring Real-Time Workshop for Stateflow

3 In the right pane, in the Stateflow section, select from the following
options:

• Use bitsets for storing state configuration — Enabling this option
specifies that bitsets be used for storing state configuration variables.
This can significantly reduce the amount of memory required to store the
variables. However, it can increase the amount of memory required to
store target code if the target processor does not include instructions for
manipulating bitsets.

• Use bitsets for storing boolean data — Enabling this option specifies
that bitsets be used for storing Boolean data. This can significantly reduce
the amount of memory required to store Boolean variables. However, it can
increase the amount of memory required to store target code if the target
processor does not include instructions for manipulating bitsets.

• Minimize array reads using temporary variables — In certain
microprocessors, global array read operations are more expensive than
accessing a temporary variable on stack. Using this option minimizes array
reads by using temporary variables when possible.

For example, the generated code

a[i] = foo();
if(a[i]<10 && a[i]>1) {

y = a[i]+5;
}else{
z = a[i];
}

now becomes

a[i] = foo();
temp = a[i];
if(temp<10 && temp>1) {

y = temp+5;
}else{

z = temp;
}

14-15

14 Building Targets

Configuring Stateflow Blocks in Library Models for
Real-Time Workshop
For library models you configure the Stateflow blocks in your model for
Real-Time Workshop by adding an RTW target. When the model is built, the
configuration for this target is carried into the Simulink RTW configuration
and resolved under actual Simulink conditions.

To configure an existing Stateflow RTW target for a library model, do the
following:

1 From the Stateflow diagram editor Tools menu, select Open RTW Target.

The Stateflow RTW Target Builder dialog box appears:

Note The option Stateflow Target builds Stateflow code in the RTW
target.

2 Select Coder Options to specify Stateflow code generation options for
the RTW target.

The RTW Coder Options dialog box appears, as shown.

14-16

Configuring Real-Time Workshop for Stateflow

3 Select any combination of the following coder options:

• Comments in generated code — Include comments in the generated
code.

• Use bitsets for storing state configuration — Use bitsets for storing
state configuration variables. This can significantly reduce the amount
of memory required to store the variables. However, it can increase the
amount of memory required to store target code if the target processor
does not include instructions for manipulating bitsets.

• Use bitsets for storing boolean data — Use bitsets for storing
Boolean data. This can significantly reduce the amount of memory
required to store Boolean variables. However, it can increase the amount
of memory required to store target code if the target processor does not
include instructions for manipulating bitsets.

• Compact nested if-else using logical AND/OR operators --
Improves readability of generated code by compacting nested if-else
statements using logical AND (&&) and OR (||) operators.

For example, the generated code

if(c1) {
if(c1) {

a1();
}

}

14-17

14 Building Targets

now becomes

if(c1 && c2) {
a1();

}

and the generated code

if(c1) {
/* fall through to do a1() */

}else if(c2) {
/* fall through to do a1() */

}else{
/* skip doing a1() */
goto label1;

}
a1();
label1:

a2();

becomes

if(c1 || c2) {
a1();

}
a2();

• Recognize if-elseif-else in nested if-else statements -- Improves
readability of generated code by recognizing and emitting an
if-elseif-else construct in place of deeply nested if-else statements.

For example, the generated code

if(c1) {
a1();

}else{
if(c2) {

a2();
}else{

if(c3) {

14-18

Configuring Real-Time Workshop for Stateflow

a3();
}

}
}

becomes

if(c1) {
a1();

}else if(c2) {
a2();

}else if(c3) {
a3();

}

• Replace constant expressions by a single constant -- Improves
readability by preevaluating constant expressions and emitting a single
constant. This optimization also opens up opportunities for eliminating
dead code.

For example, the generated code

if(2+3<2) {
a1();

}else {
a2(4+5);

}

becomes

if(0) {
a1();

}else {
a2(9);

}

in the first phase of this optimization. The second phase eliminates the
if statement, resulting in simply

a2(9);

14-19

14 Building Targets

• Minimize array reads using temporary variables — In certain
microprocessors, global array read operations are more expensive than
accessing a temporary variable on stack. Using this option minimizes
array reads by using temporary variables when possible.

For example, the generated code

a[i] = foo();
if(a[i]<10 && a[i]>1) {

y = a[i]+5;
}else{

z = a[i];
}

becomes

a[i] = foo();
temp = a[i];
if(temp<10 && temp>1) {

y = temp+5;
}else{

z = temp;
}

• Preserve symbol names — (See note below before using.) Preserve
symbol names (names of states and data) in generated code. This option
is useful when the target contains custom code that accesses Stateflow
data.

This option can generate duplicate C symbols if the source chart contains
duplicate symbols, for example, two substates with identical names.
Enable the next option to avoid duplicate substate names.

• Append symbol names with parent names — (See note below before
using.) Generate a state or data name by appending the name of the
item’s parent to the item’s name.

• Use chart names with no mangling — (See note below before using.)
Preserve the names of chart entry functions so that they can be invoked
by user-written C code.

14-20

Configuring Real-Time Workshop for Stateflow

Note When you use the options Preserve symbol names, Append
symbol names with parent names, or Use chart names with no
mangling, the names of symbols in generated code are not mangled
to make them unique. Because these options do not check for symbol
conflicts in generated code, use them only when your symbol names are
unique within the model. Conflicts in generated names cause variable
aliasing and compilation errors.

4 Select (check) the Use local custom code settings (do not inherit
from the main model) option if you want the library model to use its
own custom code settings rather than inheriting the main model’s custom
code settings.

5 To integrate custom code with Stateflow generated code for the RTW target,
select Target Options.

See “Integrating Custom Code with Stateflow Targets” on page 14-27 for
details on using the RTW target to integrate custom code with generated
code for the Stateflow diagrams in the model.

6 To finish configuring the RTW target, do one of the following:

• Click Apply to apply the selected options.

• Click OK to apply the options and close the dialog.

• Click Build to build the RTW target.

Note To configure Stateflow to recognize C bitwise operators (~, &, |,
^, >>, and so on) in action language statements and encode them as C
bitwise operations, select the Enable C-bit operations property in the
Chart Properties dialog.

Custom code options are selected through the Target Options button. To
specify custom code options for your RTW target, see “Integrating Custom
Code with Stateflow Targets” on page 14-27.

14-21

14 Building Targets

Configuring a Custom Target in Stateflow
A Stateflow custom target (named anything but sfun or rtw) is a convenience
for collecting the generated code for the Stateflow charts in a model. After
you collect the code, you can use this code at your own discretion in building
your own applications. You configure a custom target in the Model Explorer
with the following procedure:

1 From the Stateflow diagram editor toolbar, select Explore icon:

2 The Model Explorer appears with the Stateflow chart highlighted in
the Model Hierarchy pane.

3 In the Model Explorer, in the left Model Hierarchy pane, select the
Simulink model with the custom target.

14-22

Configuring a Custom Target in Stateflow

The custom target (in this example, ctarg) appears as a child of the
Simulink model. Custom targets have names other than sfun or rtw.

If you need to create a custom target in the Model Explorer, see “Adding
a Target in the Model Explorer” on page 16-6.

4 In the Contents pane, click the row for the custom target ctarg.

The Stateflow Target Builder dialog appears in the dynamic dialog on
the right, as shown.

14-23

14 Building Targets

5 In the Stateflow Target Builder dynamic dialog, in the long field below
the Target Language descriptor, select one of the following build options:

• Generate code only (non-incremental) to regenerate code for all
charts in the model.

• Rebuild All (including libraries) to rebuild the target, including
chart libraries, from scratch.

• Make without generating code to invoke the Make process without
generating code. This is useful when you have custom source files that
need to be recompiled within a Stateflow incremental build mechanism
that does not detect changes in custom software files.

6 To specify code generation options for a custom target, select the Coder
Options.

The Coder Options dialog box for the custom target appears as follows:

14-24

Configuring a Custom Target in Stateflow

7 Select any or all of the following options:

The following options are unique to custom targets:

• I/O Format Options — Can be any one of the following:

Select Use global input/output data to generate chart input and
output data as global variables.

Select Pack input/output data into structures to generate structures
for chart input data and chart output data.

The Separate argument for input/output data generates input and
output data as separate arguments to a function.

• Generate chart initializer function — Generates a function
initializer of data.

• Multi-instance capable code — Generates multiply instantiable chart
objects instead of a static definition.

14-25

14 Building Targets

The following options are also available for RTW targets. See “Configuring
Real-Time Workshop for Stateflow” on page 14-13 for a description.

• Comments in generated code

• Use bitsets for storing state configuration

• Use bitsets for storing boolean data

• Compact nested if-else using logical AND/OR operators

• Recognize if-elseif-else in nested if-else statements

• Replace constant expressions by a single constant

• Minimize array reads using temporary variables

• Preserve symbol names

• Append symbol names with parent names

• Use chart names with no mangling

Custom code options are selected through the Target Options button. To
specify custom code options for your rtw target, see “Integrating Custom Code
with Stateflow Targets” on page 14-27.

1 Select (check) the Use settings for all libraries option if you want the
settings that you specify for this target to apply to all the Stateflow charts
contributed by library models as well.

2 To specify custom code options for the simulation target, select Target
Options.

See “Integrating Custom Code with Stateflow Targets” on page 14-27 for
details on using the custom target to integrate custom code with generated
code for the Stateflow diagrams in the model.

3 To finish configuring the custom target, do one of the following:

• Click Apply to apply the selected options.

• Click OK to apply the options and close the dialog.

• Click Build to build the RTW target.

14-26

Integrating Custom Code with Stateflow Targets

Integrating Custom Code with Stateflow Targets
For all Stateflow targets (simulation, RTW, and custom) you can configure
custom code options that let you incorporate custom C or C++ code into the
target you build for a model. This lets you take advantage of legacy code
that augments model capabilities and lets you define and include custom
global variables that can be shared by both Stateflow generated code and
your custom code.

Integrate custom code with Stateflow targets as described in the following
topics:

• “Specifying Custom Code Options for Stateflow Targets” on page 14-27 —
Describes the target options you need to set and specify in order to build
custom code into your target.

• “Specifying Relative Paths for Custom Code” on page 14-30— Shows
you where Stateflow searches for the custom code files you specify with
a relative path.

• “Including Custom C++ Code” on page 14-31 — Shows you how to specify
and include C++ custom code with your library model.

Specifying Custom Code Options for Stateflow
Targets
You include custom code in Stateflow simulation, RTW, and custom targets
in the tabbed option pages of the Stateflow Target Options dialog. Use the
following procedure to specify configuration options to build custom code into
a Stateflow target:

1 Open the Target Builder dialog for the Stateflow simulation, RTW, or
custom target as described in the following sections:

• “Configuring a Simulation Target for Stateflow” on page 14-10

• “Configuring Stateflow Blocks in Library Models for Real-Time
Workshop” on page 14-16

• “Configuring a Custom Target in Stateflow” on page 14-22

14-27

14 Building Targets

You also access the Target Builder dialog for an RTW or custom target
when you first create it. See “Adding Stateflow Targets” on page 14-8 for
instructions.

2 In the Target Builder dialog, select the Target Options button.

The Target Options dialog appears, as shown:

3 Specify your custom code in the edit boxes of the following tabbed pages of
the Target Options dialog:

• Include Code — Enter code lines (for example, #include test.h)
to include at the top of a generated header file that declares custom
functions and data used by the generated code. These code lines are
included at the top of all generated source code files and are visible to
all generated code.

Since the code specified in this option is included in multiple source files
that are linked into a single binary, there are some limitations on what
you can and cannot include. For example, you should not include a global
variable definition such as int x; or a function body such as

void myfun(void)
{
...
}

These code lines cause linking errors because their symbols are defined
multiple times in the source files of the generated code. You can,
however, include extern declarations of variables or functions such as
extern int x; or extern void myfun(void);.

14-28

Integrating Custom Code with Stateflow Targets

• Include Paths — Enter a space-separated list of the directory paths
that contain custom header files to be included either directly (see
Include Code option) or indirectly in the compiled target. See “Specifying
Relative Paths for Custom Code” on page 14-30 for instructions on
entering directory path names.

• Source Files — Enter a list of source files to be compiled and linked
into the target. You can separate source files with either a comma, a
space, or a new line. See “Specifying Relative Paths for Custom Code” on
page 14-30 for instructions on entering directory path names.

• Libraries — Enter a space-separated list of static libraries containing
custom object code to be linked into the target. See “Specifying Relative
Paths for Custom Code” on page 14-30 for instructions on entering
directory path names.

• Generated Code Directory — For custom targets you can specify an
optional directory to receive the generated code.

• Initialization Code — Code statements that are executed once at
the start of simulation. You can use this initialization code to invoke
functions that allocate memory or perform other initializations of your
custom code. This option does not apply to custom targets.

• Termination Code — Enter code statements that are executed at the
end of simulation. You can use this code to invoke functions that free
memory allocated by the custom code or perform other cleanup tasks.
This option does not apply to custom targets.

• Reserved Names — Sometimes the names of variables and functions in
Stateflow generated code matches the names of variables or functions
specified in custom code. When this occurs, the compiler reports a
“redeclaration” or “redefinition” of the variable or function name. When
you encounter an error like this, enter the name that causes this conflict.
Stateflow changes the name in its generated code.

4 Click Apply to apply the specification to the target or OK to apply the
specifications and close the dialog.

If you make a change in one of your custom code options, to force the target
rebuild to incorporate your changes you must either change one of the
charts slightly (this forces a rebuild when you simulate again) or go to the
Simulation Target Builder dialog box and select the Rebuild All option.

14-29

14 Building Targets

References
For additional information on specifying custom code for your target, see
the following online articles:

• "Integrating Custom C Code Using Stateflow 2.0" by V. Raghavan

• "Automatic Code Generation from Stateflow for Palm OS Handhelds: a
Tutorial" by D. Maclay

Specifying Relative Paths for Custom Code
You specify custom code options for Stateflow targets in “Specifying Custom
Code Options for Stateflow Targets” on page 14-27. If you specify paths and
files with absolute paths and later move them, you have to change these paths
to point to new locations. Because of this, it is recommended that you use
relative paths for custom code options that specify paths or files.

How Stateflow Searches Relative Paths
Stateflow searches paths relative to the following directories:

• The current directory

• The model directory (if different from the current directory)

• The list of directories specified for the Include Path option

• All the directories on MATLAB’s search path, excluding the toolbox
directories

Path Syntax Rules
When constructing relative paths for custom code, follow these syntax rules:

• You can use the forward slash (/) or backward slash (\) as a file separator,
regardless of whether you are on a UNIX or PC platform. The makefile
generator parses these strings and returns the path names with the correct
platform-specific file separators.

• Paths can contain tokens that are evaluated in the MATLAB workspace, as
long as you enclose them with dollar signs ($...$). For example, consider
this path:

14-30

http://www.mathworks.com/company/digest/june99/stateflow/
http://www.mathworks.com/company/digest/december00/codegen.shtml

Integrating Custom Code with Stateflow Targets

$mydir1$\dir1

In this example, mydir1 is a string variable defined in the MATLAB
workspace as 'd:\work\source\module1'. Stateflow generates this
custom include path as

d:\work\source\module1\dir1

• You must enclose paths in double quotes if they contain spaces or other
nonstandard path characters, such as hyphens (-).

Including Custom C++ Code
You specify custom C code for Stateflow targets as described in “Specifying
Custom Code Options for Stateflow Targets” on page 14-27. Use the following
procedure to include custom C++ code with a target:

1 Add a C function wrapper to your existing custom code. This wrapper
function executes the C++ code that you are including.

The C function wrapper should have the following form:

int my_c_function_wrapper()
{
.
.
.
//C++ code
.
.
.
return result;

}

2 Create a header file that prototypes the C function wrapper in the previous
step.

The header file should have the following form:

int my_c_function_wrapper();

14-31

14 Building Targets

The value _cplusplus is defined if your compiler supports C++ code. The
extern "C" wrapper specifies C linkage with no name mangling.

3 Configure the Stateflow simulation target. You can access this dialog as
follows:

a From the Stateflow chart, select Tools -> Open Simulation Target and
click the Target Options button.

b Add the header file to the Include Code tab. Click Apply.

c Add the custom C++ files to the Include Paths or Source Files tabs.
Click Apply.

d If you need to make additional configurations in this dialog, do so now.
Click OK when you are done.

4 Select C++ in the Language option of the Real-Time Workshop
configuration dialog. You can access this dialog as follows:

a From the model, select Simulation -> Configuration Parameters.

b Select the Real-Time Workshop pane.

The general Real-Time Workshop pane is displayed.

c Select C++ from the Language pull-down menu. Click Apply.

d If you need to make additional configurations in this dialog, do so now.
Click OK when you are done.

The preceding procedure describes how to include custom C++ code with a
target for a simulation. If you also want to generate code with Real-Time
Workshop, use the following procedure to duplicate the Stateflow chart header
file and C++ file entries for Real-Time Workshop:

1 Be sure that you have performed the preceding procedure.

2 Configure the Real-Time Workshop configuration set. You can access this
dialog as follows:

a From the model, select Simulation -> Configuration Parameters.

b Select the Custom Code subpane under the Real-Time Workshop
pane.

14-32

Integrating Custom Code with Stateflow Targets

c Add the header file to the Header File option. Click Apply.

d Add the custom C++ files to the Include directories or Source files
option. Click Apply.

e If you need to make additional configurations in this dialog, do so now.
Click OK when you are done.

You can now generate code for the model.

14-33

14 Building Targets

Starting the Build
Once you have completely configured a Stateflow simulation or RTW target,
you want to start the build process to generate code from your model and
compile it. This section describes how to start a build for a simulation target
or Real-Time Workshop target in Stateflow with the following topics:

• “Starting a Simulation Target Build” on page 14-34 — Tells you how to
start a build for the simulation target (sfun).

• “Starting an RTW Target Build” on page 14-35 — Tells you how to start
a build for the RTW target (rtw).

Starting a Simulation Target Build
You can start a target build for a Stateflow simulation target (sfun) in one
of the following ways:

• Select Start from the Stateflow or Simulink editor’s Simulation menu

Automatically builds and runs a simulation target.

• Select Debug from the Stateflow editor’s Tools menu

Automatically builds and runs a simulation target. This is equivalent to
the previous method.

• Select the Build button on the Simulation Target Builder dialog box
for the target

Use this option if you want to build a simulation target without running it.
You would typically want to do this to ensure that Stateflow can build a
target containing custom code.

Using the target builder to launch the build allows you to choose between
an incremental build, a full build, and a build without code generation. See
“Configuring a Simulation Target for Stateflow” on page 14-10 for more
information.

14-34

Starting the Build

Starting an RTW Target Build
You can start a target build for a Stateflow Real-Time Workshop (rtw) target
in one of the following ways:

• By selecting the Build RTW button on the RTW Target Builder dialog
box for the target

You must use this option to build stand-alone targets. Using the target
builder to launch the build allows you to choose between full build or
rebuild and a build of Stateflow code only. See “Configuring Real-Time
Workshop for Stateflow” on page 14-13 for more information.

• By selecting the Build button on the Real-time Workshop panel of the
Simulation Parameters dialog box in Simulink.

Select Real-Time Workshop options on the RTW Target Builder dialog
box to access the Simulation Parameters dialog box of Simulink. See
“Configuring Real-Time Workshop for Stateflow” on page 14-13 for more
information.

14-35

14 Building Targets

Parsing Stateflow Diagrams
When you begin a build for a target as described in “Starting the Build” on
page 14-34, the parser evaluates the graphical and nongraphical objects in
each Stateflow machine against the supported Stateflow notation and the
action language syntax. This section describes the Stateflow parser and how
its messages appear with the following topics:

• “Calling the Stateflow Parser” on page 14-36 — Shows you how to call the
Stateflow Parser to parse your current diagram at any time.

• “Parser Error Checking” on page 14-37 — Lists the types of errors that
Stateflow parses the diagram for.

• “Parsing Diagram Example” on page 14-37 — Gives you an example of
parsing an example Stateflow diagram with a parsing error.

Calling the Stateflow Parser
Apart from building a target, you can call the Stateflow parser to check the
syntax of your Stateflow diagrams in one of the following ways:

• Parse an individual Stateflow diagram in the Stateflow diagram editor by
selecting Parse Diagram from the Tools menu.

• Parse a Stateflow machine, that is, all the Stateflow charts in a model, by
selecting Parse from the Tools menu in the Stateflow diagram editor.

• When you simulate a model, build a target, or generate code, the Stateflow
machine is automatically parsed.

In all cases, the Stateflow Builder window displays when parsing is
complete. If parsing is unsuccessful (that is, an error is detected), the
Stateflow diagram editor automatically appears with the highlighted object
causing the first parse error. In the Stateflow Builder window, each error
is displayed with a leading red button icon. You can double-click any error
in this window to bring its source Stateflow diagram to the front with the
source object highlighted. See “Parsing Diagram Example” on page 14-37 for
example displays of parsing results in the Stateflow Builder window.

14-36

Parsing Stateflow Diagrams

Note Parsing informational messages are also displayed in the MATLAB
Command Window.

Parser Error Checking
The parser evaluates the graphical and nongraphical objects in each Stateflow
machine against the supported Stateflow notation and the action language
syntax. Errors are displayed in informational pop-up windows. See “Parsing
Stateflow Diagrams” on page 14-36 for more information.

Some aspects of the notation are verified at run-time. Others are verified
during application run-time. Using the Debugger, you can detect the following
run-time errors during simulation:

• State Inconsistency — Most commonly caused by the omission of a default
transition to a substate in superstates with XOR decomposition. See
“Debugging State Inconsistencies” on page 15-16.

• Transition Conflict — Occurs when there are two equally valid transition
paths from the same source. See “Debugging Conflicting Transitions” on
page 15-18.

• Data Range Violation — Occurs when minimum and maximum values
specified for a data in its properties dialog are exceeded or when fixed-point
data overflows its base word size. See “Debugging Data Range Violations”
on page 15-20.

• Cyclical Behavior — Occurs when a step or sequence of steps repeats itself
indefinitely. See “Debugging Cyclic Behavior” on page 15-22.

You can modify the notation to resolve run-time errors. See Chapter 15,
“Debugging and Testing” for more information on debugging run-time errors.

Parsing Diagram Example
For the following Stateflow diagram, the steps that follow describe the parsing
process and its reported results.

14-37

14 Building Targets

1 Parse the Stateflow diagram.

Choose Parse Diagram from the graphics editor Tools menu to parse the
Stateflow diagram. State A in the upper left corner is selected and this
message is displayed in the pop-up window and the MATLAB Command
Window.

2 Fix the parse error.

In this example, there are two states with the name A. Edit the Stateflow
diagram and label the duplicate state with the text B.

The Stateflow diagram should look similar to this.

14-38

Parsing Stateflow Diagrams

3 Reparse.

Choose Parse Diagram from the graphics editor Tools menu. This
message displays in the pop-up menu and the MATLAB Command Window.

4 Fix the parse error.

In this example, the state with the question mark needs to be labeled with
at least a state name. Edit the Stateflow diagram and label the state with
the text C. The Stateflow diagram should look similar to this.

14-39

14 Building Targets

5 Reparse.

Choose Parse Diagram from the graphics editor Tools menu. This
message is displayed in the pop-up window and the MATLAB Command
Window.

6 Fix the parse error.

In this example, the transition label contains a syntax error. The closing
bracket of the condition is missing. Edit the Stateflow diagram and add the
closing bracket so that the label is E_one [C_one].

7 Reparse.

Choose Parse Diagram from the graphics editor Tools menu. This
message is displayed in the pop-up window and the MATLAB Command
Window.

14-40

Parsing Stateflow Diagrams

The Stateflow diagram now has no parse errors.

14-41

14 Building Targets

Resolving Event, Data, and Function Symbols
When you simulate a model, build a target, or generate code for a target, the
Stateflow machine is automatically parsed (see “Parsing Stateflow Diagrams”
on page 14-36). During that time, if Stateflow finds that your diagram does not
resolve some of its symbols, it uses the following process to determine whether
to report parse errors for the unresolved symbols or continue generating code:

Symbol Autocreation Wizard
The Symbol Autocreation Wizard helps you to add missing data and events to
your Stateflow charts. When you parse or simulate a diagram, the Wizard
detects references to data and events that are not already defined in the
Stateflow Explorer and opens with a list of the recommended data or events
that you need to define.

14-42

Resolving Event, Data, and Function Symbols

To accept, reject, or change a recommended item, do the following:

• To accept an item, select the space in front of the item under the check
mark column.

To accept all items, select the CheckAll button.

• To reject an item, leave it unchecked.

• To change an item, select the value under the T (type), Scope, or Proposed
Parent column for that item.

Each time you select the value, the Wizard replaces the entry with a
different value. Keep selecting until the desired value appears.

When you are satisfied with the proposed symbol definitions, click the
Wizard’s Create button to add the symbols to Stateflow’s data dictionary.

14-43

14 Building Targets

Error Messages
When building a target or parsing a diagram, you might see error messages
from any of the following sources: the parser, the code generator, or external
build tools (make utility, C compiler, linker). Stateflow displays errors in a
dialog box and in the MATLAB Command Window. Double-clicking a message
in the error dialog zooms the source Stateflow diagram to the object that
caused the error.

This section contains the following topics:

• “Parser Error Messages” on page 14-44 — Lists some of the messages you
can receive during parsing of your Stateflow diagram.

• “Code Generation Error Messages” on page 14-45 — Lists some of the
messages you can receive during code generation for your Stateflow
diagram.

• “Compilation Error Messages” on page 14-46 — Explains the difference
between compilation error messages that you receive during parsing and
code generation messages.

Parser Error Messages
The Stateflow parser flags syntax errors in a state chart. For example, using
a backward slash (\) instead of a forward slash (/) to separate the transition
action from the condition action generates a general parse error message.

Typical parse error messages include the following:

• "Invalid state name xxx" or "Invalid event name yyy" or "Invalid
data name zzz"

A state, data, or event name contains a nonalphanumeric character other
than underscore.

• "State name xxx is not unique in objects #yyy and #zzz"

Two or more states at the same hierarchy level have the same name.

• "Invalid transition out of AND state xxx (#yy)"

A transition originates from an AND (parallel) state.

14-44

Error Messages

• "Invalid intersection between states xxx and yyy"

Neighboring state borders intersect. If the intersection is not apparent,
consider the state to be a cornered rectangle instead of a rounded rectangle.

• "Junction #x is sourcing more than one unconditional
transition"

More than one unconditional transition originates from a connective
junction.

• "Multiple history junctions in the same state #xxx"

A state contains more than one history junction.

Code Generation Error Messages
Typical code generation error messages include the following:

• "Failed to create file: modelName_sfun.c"

The code generator does not have permission to generate files in the
current directory.

• "Another unconditional transition of higher priority shadows
transition # xx"

More than one unconditional inner, default, or outer transition originates
from the same source.

• "Default transition cannot end on a state that is not a
substate of the originating state."

A transition path starting from a default transition segment in one state
completes at a destination state that is not a substate of the original state.

• "Input data xxx on left hand side of an expression in yyy"

A Stateflow expression assigns a value to an Input from Simulink data
object. By definition, Stateflow cannot change the value of a Simulink
input.

• "Transition <number> has a condition action which is preceded
by a transition <number> containing a transition action. This
is not allowed as it results in out-of-order execution, i.e.,
the condition action of <number> gets executed before the
transition action of <number>."

14-45

14 Building Targets

The preceding Stateflow diagram flags this error. Assuming that there are
no other actions than those indicated for the labeled transition segments
between state A and state B, the sequence of execution that takes place
when state A is active is expressed by the following pseudocode:

If (c1) {
if(c2) {
a2;
exit A;
a1;
enter B;

}
}

Because condition actions are evaluated when their guarding condition is
true and transition actions are evaluated when the transition is actually
taken, condition action a2 is executed prior to transition action a1. This
violates the apparent graphical sequence of executing a1 then a2. In this
case, the preceding diagram is flagged for an error during build time. As a
remedy, the user can change a1 and a2 to be both condition or transition
actions.

Compilation Error Messages
If compilation errors indicate the existence of undeclared identifiers, verify
that variable expressions in state, condition, and transition actions are
defined.

Consider, for example, an action language expression such as a=b+c. In
addition to entering this expression in the Stateflow diagram, you must create
data objects for a, b, and c using the Explorer. If the data objects are not
defined, the parser assumes that these unknown variables are defined in the
Custom code portion of the target (which is included at the beginning of the
generated code). This is why the error messages are encountered at compile
time and not at code generation time.

14-46

Generated Files

Generated Files
All generated files are placed in a subdirectory of the sfprj subdirectory of
the MATLAB current directory. You set the MATLAB current directory in
the Start in field for the properties of the MATLAB program icon that you
used to start MATLAB. You can change it in MATLAB with a cd command as
you would in DOS or UNIX.

Note Do not confuse the sfprj directory created in the MATLAB current
directory for generated files with the sfprj directory in the directory
containing the model file. The latter sfprj directory is used for storing
information on the model, while the former stores generated files. However,
if the MATLAB current directory is the model directory, the same sfprj
directory (under the model directory) is used to store both model information
and generated files.

This section contains the following topics:

• “S-Function MEX-Files” on page 14-47 — Explains the origin of MEX files
that Stateflow generates as part of building a simulation target.

• “Code Files” on page 14-48 — Describes the code files that you build for
your target as part of code generation.

• “Makefiles” on page 14-49 — Describes the makefiles that result when you
build your target into an executable.

S-Function MEX-Files
If you have a Simulink model named mymodel.mdl, which contains two
Stateflow blocks named chart1 and chart2, this means that you have a
machine named mymodel that parents two charts named chart1 and chart2.

When you simulate the Stateflow chart for mymodel.mdl, Stateflow generates
code for mymodel.mdl that is compiled into an S-function MEX-file known as a
simulation target. MEX-file extensions are platform-specific, as described in
“Using MEX-Files” in the MATLAB External Interfaces documentation. For
example, on 32-bit Windows PC platforms, Stateflow generates a MEX-file for

14-47

14 Building Targets

mymodel called mymodel_sfun.mexw32 On Linux x86-64 platforms, Stateflow
generates mymodel_sfun.mexa64.

Code Files
Code files for the Simulation target (sfun) are generated for each model and
placed in the subdirectory sfprj/build/<model>/sfun/src of the current
directory, where <model> represents the name of the model.

Note Do not keep any of your custom source files in the sfprj subdirectory of
your model directory.

The code generated for the simulation target sfun is organized into the
following files:

• <model>_sfun.h is the machine header file. It contains the following:

- All the defined global variables needed for the generated code

- Type definition of the Stateflow machine-specific data structure that
holds machine-parented local data

- External declarations of any Stateflow machine-specific global variables
and functions

- Custom code strings specified via the Target Options dialog box

• <model>_sfun.c is the machine source file. It includes the machine
header file and all the chart header files (described below) and contains
the following:

- All the machine-parented event broadcast functions

- Simulink interface code

• <model>_sfun_registry.c is a machine registry file that contains
Simulink interface code.

• <model>_sfun_cn.h is the chart header file for the chart chartn, where n =
1, 2, 3, and so on, depending on how many charts your model has (see the
following note). This file contains type definitions of the chart-specific data
structures that hold chart-parented local data and states.

14-48

Generated Files

• <model>_sfun_cn.c is the chart source file for chartn, where n = 1, 2, 3,
and so on, depending on how many charts your model has (see the following
note). This chart source file includes the machine header file and the
corresponding chart header file. It contains the following:

- Chart-parented data initialization code

- Chart execution code (state entry, during, and exit actions, and so on)

- Chart-specific Simulink interface code

Note Every chart is assigned a unique number at creation time by
Stateflow. This number is used as a suffix for the chart source and chart
header file names for every chart (where n = 1, 2, 3, and so on, depending
on how many charts your model has).

Makefiles
Makefiles generated for your model are platform and compiler specific. On
UNIX platforms, Stateflow generates a gmake-compatible makefile named
mymodel_sfun.mku that is used to compile all the generated code into an
executable. On PC platforms, an ANSI C compiler-specific makefile is
generated based on your C-MEX setup as follows:

• If your installed compiler is Microsoft Visual C++ 4.2, 5.0, or 6.0, the
following files are generated:

- MSVC-compatible makefile named mymodel_sfun.mak

- Symbol definition file named mymodel_sfun.def (required for building
S-function MEX-files)

• If your installed compiler is Watcom 10.6 or 11.0, the following file is
generated:

- Watcom-compatible makefile named mymodel_sfun.wmk

• If your installed compiler is Borland 5.0, the following files are generated:

- Borland-compatible makefile named mymodel_sfun.bmk

- Symbol definition file named mymodel_sfun.def (required for building
S-function MEX-files)

14-49

14 Building Targets

• If you choose lcc-win32, a bundled ANSI-C compiler shipped with
Stateflow, the following file is generated:

- An lcc compatible makefile named mymodel_sfun.lmk

Stateflow Coder also generates another support file needed for the make
process, named <model>_sfun.mol.

14-50

15

Debugging and Testing

To ensure that your Stateflow diagrams are behaving as you expect them
to, use the Stateflow Debugging window to evaluate code coverage and
perform dynamic checking during simulation.

Debugging with the Debugging
Window (p. 15-3)

Describes the parts of the
Stateflow Debugging window
during debugging.

Debugging Run-Time Errors
Example (p. 15-11)

Shows you how to debug run-time
errors in Stateflow diagrams with an
actual example model.

Debugging State Inconsistencies
(p. 15-16)

Describes how state inconsistencies
due to faulty Stateflow notation are
detected and debugged.

Debugging Conflicting Transitions
(p. 15-18)

Describes how conflicting
transitions, transitions that
are equally valid during execution,
are detected and debugged.

Debugging Data Range Violations
(p. 15-20)

Describes how to debug for
occurrences of the value of a data
object exceeding its maximum value
or dropping below its minimum
value.

Debugging Cyclic Behavior (p. 15-22) Shows you how the Stateflow
Debugging window detects
algorithms that lead to infinite
recursions and looping caused by
event broadcasts.

15 Debugging and Testing

Watching Data Values with
Debuggers (p. 15-26)

Shows you a variety of ways that
you can keep track of the values for
Stateflow data and state activity
during simulation.

Monitoring Stateflow Test Points
(p. 15-32)

Shows you how to specify local data
or states as test points that you
can plot with a floating scope or
log to MATLAB workspace during
simulation.

Understanding Model Coverage for
Stateflow Charts (p. 15-44)

Describes how the Model Coverage
tool determines the extent to which a
model test case exercises simulation
control flow paths through a model.

15-2

Debugging with the Debugging Window

Debugging with the Debugging Window
You use the Stateflow Debugging window to control simulation to make sure
that your Stateflow diagrams are behaving exactly as you expect them to.

To open the Stateflow Debugging window,

1 From the Tools menu, select Debug.

The Stateflow Debugging window opens as shown:

This section shows you how to use the Stateflow Debugging window to debug
your Stateflow diagrams during simulation in the following topics:

• “Setting Breakpoints for Debugging” on page 15-4 — Shows you how to
specify execution points in your target where execution stops for debugging
purposes.

• “Setting Error Checking in the Debugging Window” on page 15-6 —
Describes the optional error checking available in the Debugging window.

• “Controlling Animation in the Debugging Window” on page 15-8 — Shows
you how to activate, deactivate, and control the speed of animation of
Stateflow diagrams during simulation.

15-3

15 Debugging and Testing

• “Starting Simulation in the Debugging Window” on page 15-7 — Shows you
how to start simulation in the Debugging window and describes the items
displayed in the Status Display Area of the Stateflow Debugging window
when a breakpoint is encountered during simulation.

• “Controlling the Execution Rate in the Debugging Window” on page 15-9 —
Describes the control buttons that you can use to control execution during
simulation before and after breakpoints are encountered.

• “Setting the Output Display Pane” on page 15-10 — Describes the buttons
you use during simulation to display information you use to debug your
application.

Setting Breakpoints for Debugging
A breakpoint indicates a point at which the Stateflow Debugging window
halts execution of a simulating Stateflow diagram. At this time you can
inspect Stateflow and MATLAB workspace data and examine the status of a
simulating Stateflow diagram.

The Stateflow Debugging window supports global and local breakpoints.
Global breakpoints halt execution on any occurrence of the specific type of
breakpoint. Local breakpoints halt execution on a specific object.

Setting Global Breakpoints
Use the Breakpoint controls in the Stateflow Debugging window to specify
global breakpoints. When a global breakpoint is encountered during
simulation, execution stops and the Debugger takes control. Select any or all
of the following global breakpoints:

• Chart Entry — Simulation halts on chart entry.

• Event Broadcast — Simulation halts when an event is broadcast.

• State Entry — Simulation halts when a state is entered.

These breakpoints can be changed during run-time and are immediately
enforced. When you save a Stateflow diagram, the breakpoint settings are
saved with it.

Global breakpoints can be changed during run-time and are immediately
enforced. When you save the Stateflow diagram, all the Stateflow

15-4

Debugging with the Debugging Window

Debugging window settings (including breakpoints) are saved, so that the
next time you open the model, the breakpoints are as you left them.

Setting Local Breakpoints
You can set breakpoints for specific state actions, transitions, function calls,
and event broadcasts in a Stateflow chart.

1 Open the properties dialog of the object for which you want to set a
breakpoint, as follows:

a Right-click the object from one of these sources:

Right-Click In:Object

Stateflow Chart Model Explorer

State

Transition

Function

Event

b From the resulting pop-up menu, select Properties.

A dialog box appears for setting the properties of the object.

2 In the properties dialog box, select from the following breakpoints options:

15-5

15 Debugging and Testing

For: Select:

States State During — Stop execution before performing the
state during actions.

State Entry — Stop execution before performing the
state entry actions.

State Exit — Stop execution before performing the state
exit actions.

Transitions When Tested — Stop execution before testing the
transition to see if it is a valid path.

When Valid — Stop execution after the transition tests
valid, but before taking the transition.

Functions Function Call — Stop execution before calling the
function.

Events Start of Broadcast — Stop execution before
broadcasting the event.

End of Broadcast — Stop execution after a Stateflow
object reads the event.

Setting Error Checking in the Debugging Window
The options in the Error checking options section of the Stateflow
Debugging window insert generated code in the simulation target to
provide breakpoints to catch different types of errors that might occur during
simulation. Select any or all of the following error checking options:

• State inconsistency — Check for state inconsistency errors that are
most commonly caused by the omission of a default transition to a
substate in superstates with XOR decomposition. See “Debugging State
Inconsistencies” on page 15-16 for a complete description and example.

• Transition Conflict — Check whether there are two equally valid
transition paths from the same source at any step in the simulation.
See “Debugging Conflicting Transitions” on page 15-18 for a complete
description and example.

• Data Range — Check whether the minimum and maximum values you
specified for a data in its properties dialog are exceeded. Also check

15-6

Debugging with the Debugging Window

whether fixed-point data overflows its base word size. See “Debugging Data
Range Violations” on page 15-20 for a complete description and example.

• Detect Cycles — Check whether a step or sequence of steps indefinitely
repeats itself. See “Debugging Cyclic Behavior” on page 15-22 for a
complete description and example.

To include the supporting code designated for these debugging options in the
simulation application, select the Enable debugging/animation check box
in the Coder Options dialog for the simulation target. This is described in
“Configuring a Simulation Target for Stateflow” on page 14-10.

Note You must rebuild the target for any changes to any of the settings
referred to above to take effect.

Starting Simulation in the Debugging Window
To debug the Stateflow diagrams in a model, you start simulation in the
Debugging window with the following steps:

1 Select the Start button.

A debugging simulation session starts. When a breakpoint that you set
is encountered, the Stateflow Debugging window takes on the following
appearance:

15-7

15 Debugging and Testing

At the breakpoint, the following status items are displayed in the upper
portion of the Debugger window:

• Stopped — Displays the step executed just prior to breaking execution.

• Executing — Displays the currently executing Stateflow chart.

• Current Event — Displays the event being processed by the Stateflow
chart.

• Simulink Time — Displays the current simulation time.

• Code Coverage — Displays the percentage of code covered in this
simulation.

During simulation the Stateflow diagram is marked read-only. The
appearance of the Stateflow diagram editor toolbar and menus changes
so that object creation is not possible. When the diagram editor is in this
read-only mode, its condition is referred to as iced.

Controlling Animation in the Debugging Window
During simulation of a Simulink model, you can animate the Stateflow
diagrams. Animation highlights objects in Stateflow diagrams as they

15-8

Debugging with the Debugging Window

execute during simulation. You activate or deactivate animation for Stateflow
diagrams during simulation in the Debugging window as follows:

• To activate animation for simulation, in the Animation section of the
Debugging window, select Enabled to activate animation before the start
of simulation.

• To deactivate animation for simulation, stop simulation and select
Disabled.

Before, during, and after simulation, you control the speed of animation by
selecting a value for the Delay field as follows:

• For the fastest animation, select a value of 0 seconds.

• For the slowest animation, select a value 1 seconds.

Controlling the Execution Rate in the Debugging
Window
Once you start simulation as described in “Starting Simulation in the
Debugging Window” on page 15-7, and a breakpoint is reached, you can
control the rate of execution of Stateflow diagrams to execute step-by-step or
continuously until another breakpoint is reached. Use the following buttons
in the Stateflow Debugging window to control the rate of execution:

• Continue — After simulation has been started, and a breakpoint has been
encountered, the Start button is marked Continue. Press Continue to
continue simulation.

• Step — Execute the next execution step, and suspend the simulation.

• Break — Suspend the simulation and transfer control to the Debugging
window.

• Stop Simulation — Stop simulation altogether and relinquish debugging
control. When simulation stops, the Stateflow diagram editor toolbar and
menus return to their normal appearance and operation so that object
creation is again possible.

15-9

15 Debugging and Testing

Setting the Output Display Pane
During simulation, the Debugging window monitors a variety of execution
indicators in its output display in the bottom pane of the Debugging window.
You select the contents of this display with the following pull-downs located
just above the display, which are enabled only after a breakpoint is reached
during simulation.

• Breakpoints — Display a list of the set breakpoints. You can set
breakpoints in the Debugger and in the properties dialogs of individual
objects such as states, transitions, and functions. See “Setting Breakpoints
for Debugging” on page 15-4 for details. This option lists breakpoints for
the currently executing chart or for all charts in the model.

• Browse Data — Display the current values of defined data objects. This
pull-down list lets you filter displayed data between all data and watched
data. Watched data has the Data property Watch in Debugger enabled
for it. Each of these categories is further filtered by data for the currently
executing chart, or all charts in the model. For more details see “Watching
Data in the Stateflow Debugger” on page 15-26.

• Active States — Display a list of active states in the display area.
Double-clicking any state causes the graphics editor to display that state.
This pull-down lets you display active states in the current chart, or active
states for all charts in the model.

• Call Stack — Display a sequential list of the Stopped and Current Event
status items that occur with each single-step through the simulation.

Once you make a selection, the pull-down menu corresponding to the current
display is highlighted. Once you select an output display button, that type of
output is displayed until you choose a different display type. You can clear
the display by selecting Clear Display from the File menu of the Stateflow
Debugging window.

15-10

Debugging Run-Time Errors Example

Debugging Run-Time Errors Example
The following topics describe the steps used in a typical debugging scenario
to resolve run-time errors in an example model:

1 “Create the Model and Stateflow Diagram” on page 15-11 — Create a
Simulink model with a Stateflow diagram to debug.

2 “Debugging the Stateflow Diagram” on page 15-13 — Describes the
individual steps that you take to inspect the behavior the Stateflow
diagram during simulation.

3 “Correcting the Run-Time Error” on page 15-14 — Shows you how to deal
with the run-time error you encounter.

Create the Model and Stateflow Diagram
In this topic you create an example model that you use as a debugging
example. Use the following steps to create the example model:

1 Create the following Simulink model and Stateflow diagram:

15-11

15 Debugging and Testing

2 From the Stateflow diagram editor, add an event Switch with a scope of
Input from Simulink. and a Rising Edge trigger.

3 Also add a data Shift with a scope of Input from Simulink.

The Stateflow diagram has two states at the highest level in the hierarchy,
Power_off and Power_on. By default Power_off is active. The event Switch
toggles the system between the Power_off and Power_on states. Power_on
has three substates, First, Second, and Third. By default, when Power_on
becomes active, First also becomes active. When Shift equals 1, the system
transitions from First to Second, Second to Third, Third to First, for each
occurrence of the event Switch, and then the pattern repeats.

15-12

Debugging Run-Time Errors Example

In the Simulink model, there is an event input and a data input. A Sine
wave block is used to generate a repeating input event that corresponds with
the Stateflow event Switch. The Step block is used to generate a repeating
pattern of 1 and 0 that corresponds with the Stateflow data object Shift.
Ideally, the Switch event occurs in a frequency that allows at least one cycle
through First, Second, and Third.

Debugging the Stateflow Diagram
You create an example model with a Stateflow diagram that needs debugging
in “Create the Model and Stateflow Diagram” on page 15-11. Use the steps
that follow to debug the Stateflow diagram in this model.

1 In the Stateflow diagram editor, from the Tools menu, select Open
Simulation Target.

The Target Options dialog appears.

2 In the Target Options dialog, select Coder Options.

The Coder Options dialog appears.

3 Make sure that Enable Debugging/Animation is selected.

4 Select Close in both the Coder Options and Target Options dialogs to
close them and apply the changes.

5 In the Stateflow diagram editor, from the Tools menu, select Debug.

The Stateflow Debugging window opens.

6 Select the Chart entry option under the Break Controls border.

7 Under Animation, select Enabled to enable animation of Stateflow
diagrams during simulation.

8 In the Stateflow Debugging window, select the Start button to start
the simulation.

Informational messages are displayed in the MATLAB Command Window.
The graphics editor toolbar and menus change appearance to indicate a

15-13

15 Debugging and Testing

read-only interface. The Stateflow diagram is parsed, the code is generated,
and the target is built.

Because you specified a breakpoint on chart entry, the execution stops at
that point and the Debugger display status indicates the following:

Stopped: Just after entering during function
of Chart debug__power

Executing: sf_debug_ex_debug_power
Current Event: Input event Switch

9 Select the Step button.

The Step button executes the next execution step and stops.

10 Continue selecting the Step button and watching the animating Stateflow
diagram.

After each step, watch the Stateflow diagram animation and the Debugger
status area to see the sequence of execution.

Single-stepping shows that the Stateflow diagram does not exhibit the desired
behavior. The transitions from the First to the Second to the Third state
inside the state Power_on are not occurring because the transition from
Power_on to Power_off takes priority. The output display of code coverage
also confirms this observation.

Correcting the Run-Time Error
In “Debugging the Stateflow Diagram” on page 15-13, you step through a
simulation of an example Stateflow diagram and find an error: the generation
of the event Switch is driving the simulation and the simulation time is
passing too quickly for the input data object Shift to have an effect.

Correct this error in the following steps:

1 Choose Stop from the Simulation menu of the graphics editor.

The Stateflow diagram editor is now writable. The model might need to be
completely rethought.

15-14

Debugging Run-Time Errors Example

2 Add the condition [t > 10.0] to the transition from Power_on to
Power_off as shown.

Now the transition from Power_on to Power_off is not taken until
simulation time is greater than 10.0.

3 In the Stateflow Debugging window, select Start to begin simulation
again.

4 Select Step repeatedly to observe the new behavior.

15-15

15 Debugging and Testing

Debugging State Inconsistencies
Stateflow notations specify that states are consistent if

• An active state (consisting of at least one substate) with XOR decomposition
has exactly one active substate.

• All substates of an active state with AND decomposition are active.

• All substates of an inactive state with either XOR or AND decomposition
are inactive.

A state inconsistency error has occurred if, after a Stateflow diagram
completes an update, the diagram violates any of the preceding notation rules.

• “Causes of State Inconsistency” on page 15-16

• “Detecting State Inconsistency” on page 15-16

• “State Inconsistency Example” on page 15-16

Causes of State Inconsistency
State inconsistency errors are most commonly caused by the omission of a
default transition to a substate in superstates with XOR decomposition.

Design errors in complex Stateflow diagrams can also result in state
inconsistency errors. These errors are only detectable using the Debugger
at run-time.

Detecting State Inconsistency
To detect the state inconsistency during a simulation,

1 Build the target with debugging enabled.

2 Invoke the Debugger and enable State Inconsistency checking.

3 Start the simulation.

State Inconsistency Example
This Stateflow diagram has a state inconsistency.

15-16

Debugging State Inconsistencies

In the absence of a default transition indicating which substate is to become
active, the simulation encounters a run-time state inconsistency error.

Adding a default transition to one of the substates resolves the state
inconsistency.

15-17

15 Debugging and Testing

Debugging Conflicting Transitions
A transition conflict exists if, at any step in the simulation, there are two
equally valid transition paths from the same source. In the case of a conflict,
equivalent transitions (based on their labels) are evaluated based on the
geometry of the outgoing transitions. See “Transition Testing Order” on page
3-11 for more information.

• “Detecting Conflicting Transitions” on page 15-18

• “Conflicting Transition Example” on page 15-18

Detecting Conflicting Transitions
To detect conflicting transitions during a simulation, do the following:

1 Build the target with debugging enabled.

2 Invoke the Debugger and enable Transition Conflict checking.

3 Start the simulation.

Conflicting Transition Example
This Stateflow diagram has a conflicting transition.

15-18

Debugging Conflicting Transitions

The default transition to state A assigns data a equal to 1 and data b
equal to 10. State A’s during action increments a and decrements b. The
transition from state A to state B is valid if the condition [a > 4] is true. The
transition from state A to state C is valid if the condition [b < 7] is true. As
the simulation proceeds, there is a point where state A is active and both
conditions are true. This is a transition conflict.

Multiple outgoing transitions from states that are of equivalent label priority
are evaluated in a clockwise progression starting from the twelve o’clock
position on the state. In this example, the transition from state A to state B
is taken.

Although the geometry is used to continue after the transition conflict, it
is not recommended that you design your Stateflow diagram based on an
expected execution order.

15-19

15 Debugging and Testing

Debugging Data Range Violations
• “Types of Data Range Violations” on page 15-20

• “Detecting Data Range Violations” on page 15-20

• “Data Range Violation Example” on page 15-20

Types of Data Range Violations
Stateflow detects the following data range violations during simulation:

• If a data object equals a value outside the range of the values set in the
Initial, Minimum, and Maximum fields specified in the data properties
dialog

See “Setting Data Properties in the Data Dialog” on page 7-31 for a
description of the Initial, Minimum, and Maximum fields in the data
properties dialog.

• If the fixed-point result of a fixed-point operation overflows its bit size

See “Overflow Detection for Fixed-Point Types” on page 9-11 for a
description of the overflow condition in fixed-point numbers.

Detecting Data Range Violations
To detect data range violations during a simulation,

1 Build the target with debugging enabled.

2 Open the Debugger window.

3 In the Error checking options of the Debugger, select Data Range.

4 Start the simulation.

Data Range Violation Example
This Stateflow diagram has a data range violation.

15-20

Debugging Data Range Violations

The data a is defined to have an Initial and Minimal value of 0 and a
Maximum value of 2. Each time an event awakens this Stateflow diagram
and state A is active, a is incremented. The value of a quickly becomes a
data range violation.

15-21

15 Debugging and Testing

Debugging Cyclic Behavior
When a step or sequence of steps is indefinitely repeated (recursive), this is
called cyclic behavior. The Debugger cycle detection algorithms detect a class
of infinite recursions caused by event broadcasts.

To detect cyclic behavior during a simulation, do the following:

1 Build the target with debugging enabled.

2 Invoke the Debugger and enable Detect Cycles.

3 Start the simulation.

See the following sections for examples of cyclic behavior:

• “Cyclic Behavior Example” on page 15-22 — Shows a typical example of a
cycle created by infinite recursions caused by an event broadcast.

• “Flow Cyclic Behavior Not Detected Example” on page 15-23 — Shows
an example of cyclic behavior in a flow diagram that is not detected by
the Debugger.

• “Noncyclic Behavior Flagged as a Cyclic Example” on page 15-24 — Shows
an example of noncyclic behavior that the Debugger flags as being cyclic.

Cyclic Behavior Example
This Stateflow diagram shows a typical example of a cycle created by infinite
recursions caused by an event broadcast.

15-22

Debugging Cyclic Behavior

When the state C during action executes, event E1 is broadcast. The transition
from state A.A1 to state A.A2 becomes valid when event E1 is broadcast. Event
E2 is broadcast as a condition action of that transition. The transition from
state B.B1 to state B.B2 becomes valid when event E2 is broadcast. Event E1
is broadcast as a condition action of the transition from state B.B1 to state
B.B2. Because these event broadcasts of E1 and E2 are in condition actions, a
recursive event broadcast situation occurs. Neither transition can complete.

Flow Cyclic Behavior Not Detected Example
This Stateflow diagram shows an example of cyclic behavior in a flow diagram
that is not detected by the Debugger.

15-23

15 Debugging and Testing

The data object i is set to 0 in the condition action of the default transition. i
is incremented in the next transition segment condition action. The transition
to the third connective junction is valid only when the condition [i < 0] is
true. This condition will never be true in this flow diagram and there is a cycle.

This cycle is not detected by the Debugger because it does not involve event
broadcast recursion. Detecting cycles that depend on data values is not
currently supported.

Noncyclic Behavior Flagged as a Cyclic Example
This Stateflow diagram shows an example of noncyclic behavior that the
Debugger flags as being cyclic.

15-24

Debugging Cyclic Behavior

State A becomes active and i is initialized to 0. When the transition is tested,
the condition [i < 5] is true. The condition actions that increment i and
broadcast the event E are executed. The broadcast of E when state A is active
causes a repetitive testing (and incrementing of i) until the condition is no
longer true. The Debugger flags this as a cycle when in reality the apparent
cycle is broken when i becomes greater than 5.

15-25

15 Debugging and Testing

Watching Data Values with Debuggers
An important part of debugging is to observe the value of individual data
during simulation. Use the following topics to display the value of Stateflow
data while you are simulating a model:

• “Watching Data in the Stateflow Debugger” on page 15-26 — Display
Stateflow data values in the Stateflow Debugger after a breakpoint is
reached.

• “Watching Stateflow Data in MATLAB Command Window” on page 15-27
— Use the Command Line Debugger to report data values for the currently
executing Stateflow block at the MATLAB prompt when a breakpoint is
reached.

Watching Data in the Stateflow Debugger
The Browse Data pull-down menu in the Stateflow Debugger lets you
display selected data in the bottom output display pane of the Stateflow
Debugger during simulation, after a breakpoint is reached. Its selections
filter the displayed data items between watched data and all data. Watched
data has the property Watch in Debugger enabled for it. Watched data is
further filtered between data for the currently executing chart, or data for all
charts in the model.

The following example is set to display All Data (All Charts) for
two executing charts, Chart1 and Chart2, for the simulating model
test_debugger.mdl. Each chart has its own data value: x1 and x2,
respectively.

15-26

Watching Data Values with Debuggers

The data for each chart is headed by its owning object. Each displayed object
(chart, state, data, and so on) is accompanied by a unique identifier in the
form (#id(xx:yy:zz)), which is used in linking the listed object to its appearance
in the Stateflow diagram.

Note Fixed-point data is displayed with two values: the quantized integer
value (stored integer) and the scaled real-world (actual) value. See “Using
Fixed-Point Data in Stateflow” on page 9-5.

Watching Stateflow Data in MATLAB Command
Window
When simulation reaches a breakpoint, you can view the values of Stateflow
data in the MATLAB Command Window. In the following example, a default
transition calls an Embedded MATLAB function with a breakpoint set at the
last executable line of the function:

15-27

15 Debugging and Testing

When simulation reaches the breakpoint, you can display Stateflow data
in the MATLAB Command Window. Assuming you want to watch the data
variable vals from the previous example, follow these steps:

15-28

Watching Data Values with Debuggers

1 At the MATLAB Command Window command prompt, press Enter.

A debug>> prompt appears.

2 Enter the MATLAB command whos to view the data that is visible at the
current scope.

debug>> whos
Name Size Bytes Class

vals 4x1 32 double array
len 1x1 8 double array
stdev 1x1 8 double array
mean 1x1 8 double array
invals 4x1 32 double array

Grand total is 5 data in scope

debug>>

3 Enter the name of data array vals at the prompt to display its value.

debug>> vals

vals =

2
3
4
5

debug>>

4 Enter vals(2:3) to view the values of a submatrix of the array.

debug>> vals (2:3)

ans =

3
4

15-29

15 Debugging and Testing

debug>>

The Command Line Debugger provides the following commands during
simulation:

Command Description

dbstep Advance to next executable line of code.

dbstep
[in/out]

When debugging Embedded MATLAB functions:
• dbstep [in] advances to the next executable line of

code. If that line contains a call to another function,
execution continues to the first executable line of the
function.

• dbstep [out] executes the rest of the function and
stops just after leaving the function.

dbcont Continue execution to next breakpoint.

dbquit
(ctrl-c)

Stop simulation of the model. Press Enter after this
command to return to the MATLAB prompt.

help Display help for command-line debugging.

print var

...or...

var

Display the value of the variable var.

var (i) Display the value of the ith element of the vector or matrix
var.

var (i:j) Display the value of a submatrix of the vector or matrix
var.

save Saves all variables to the specified file. Follows the syntax
of the MATLAB save command. To retrieve variables to
the MATLAB base workspace, use load command after
simulation has been ended.

whos Display the size and class (type) of all variables in the
scope of the halted Embedded MATLAB Function block.

15-30

Watching Data Values with Debuggers

You can issue any other MATLAB command at the debug>> prompt but the
results are executed in the Stateflow workspace. For example, you can issue
the MATLAB command plot (var) to plot the values of the variable var.

To issue a command in the MATLAB base workspace at the debug>> prompt,
use the evalin command with the first argument 'base' followed by the
second argument command string, for example, evalin('base','whos').

Note To return to the MATLAB base workspace, use the dbquit command.

15-31

15 Debugging and Testing

Monitoring Stateflow Test Points
A Stateflow test point is a signal that Stateflow guarantees to be observable,
for example, by a Floating Scope block, during a simulation. Stateflow allows
you to designate a data or a state in a Stateflow diagram as a test point.
While all Stateflow states can be test points, only Stateflow data of local scope
qualify. They can be scalar, one-dimensional, or two-dimensional in size, and
of any data type except type ml. Like states, test point data must also be
a descendant of a Stateflow chart.

You implicitly declare all Stateflow data of local scope and all states as test
points if the Enable debugging/animation code option is selected for the
Stateflow simulation target. If this option is not set, you can specify individual
local data or states as test points by setting their TestPoint property in the
Stateflow API or through the Model Explorer (see “Setting Test Points for
Stateflow States and Local Data with Model Explorer” on page 15-32).

You can monitor individual Stateflow test points with a floating scope during
model simulation. You can also log test point values into MATLAB workspace
objects. Use the following topics to learn how to set test points and display the
values of Stateflow test points while you are simulating a model.

• “Setting Test Points for Stateflow States and Local Data with Model
Explorer” on page 15-32 — Through Model Explorer, set test points for
states and local data for logging and monitoring.

• “Logging Data Values and State Activity” on page 15-35 — During
simulation, log data values and state activity values into MATLAB objects
for reporting and plotting.

• “Using a Floating Scope to Monitor Data Values and State Activity” on
page 15-40 — Use a Floating Scope block to monitor Stateflow data values
continuously during simulation.

Setting Test Points for Stateflow States and Local
Data with Model Explorer
You can explicitly set individual states or local data as test points through
the Model Explorer. Use the example you create in the following procedure to
learn how to set individual test points for Stateflow states and data.

15-32

Monitoring Stateflow Test Points

1 Create the following model:

The model consists of a single Stateflow block named Chart1, which is
triggered by a signal from a Sine Wave block through the input trigger
event tic. In the Stateflow diagram, the state A and its substate X are
entered for the first tic event. State A and substate X stay active until 10
tic events have taken place and then state B is entered. On the following
event, state A and substate X are entered and the cycle continues.

The data x is added to the state X. The entry and during actions for
substate X increment x while X is active for 10 tic events. When state B is
entered, x is reinitialized to zero, and the cycle repeats.

2 At the MATLAB Command Window prompt, type

myModel

3 Start the Model Explorer. In the Simulink model, select View -> Model
Explorer.

15-33

15 Debugging and Testing

The Model Explorer is displayed.

4 In the Model Explorer, expand myModel.

5 Expand Chart1, then select A.

6 In the rightmost pane, State A, select the Test point check box. Click
Apply.

This creates a test point for the A state.

Alternatively, you can access a test point through the middle pane. By
default, the Model Explorer displays event and data child objects in the
Contents pane for the selected object in the Model Hierarchy pane.
You can set the test point for the A state through this pane by selecting
the parent of A. If the states are not listed in the middle pane, select
the States/Functions/Boxes/Etc. check box in the View -> List View
Options for All Stateflow Objects.

15-34

Monitoring Stateflow Test Points

7 Repeat step 6 for state X. Click Apply.

8 Select X again. Select the local data x in the Contents pane.

9 In the rightmost pane for that data, select the Value Attributes tab, then
select the Test point check box. Click Apply.

10 Repeat step 6 for state B. Click Apply and save the model.

You can now log these test points. See “Logging Data Values and State
Activity” on page 15-35.

Logging Data Values and State Activity
During simulation, you can log values for data and state activity into Simulink
objects. After simulation, you can access these objects in the MATLAB
workspace and use them to report and plot the values.

You can use the following procedure to learn how to access logged Stateflow
data and state activity. This procedure uses the model, myModel, from the
preceding topic, “Setting Test Points for Stateflow States and Local Data
with Model Explorer” on page 15-32.

1 If myModel is not already open, in the MATLAB Command Window prompt,
type

myModel

The model is displayed.

2 In the Simulink window, right-click the Stateflow block and select Log
Chart Signals.

The Signal Logging dialog appears, as shown.

15-35

15 Debugging and Testing

3 Select the check box next to A.

This is the state activity signal for state A. When A is active, its value is 1.
When A is inactive, its value is 0.

After checking A, notice the following properties in the right pane of the
Signal Logging dialog:

Signal Properties Description

Signal Name Name of the highlighted state or data.

Log signal data Checking this selects the highlighted signal in
the Signals pane.

Logging name Name of the signal logged. By default, this is
set to the name of the selected/highlighted state
or data. You can select Custom for this property
to rename the selected/highlighted signal in the
adjacent field to the right.

15-36

Monitoring Stateflow Test Points

Signal Properties Description

Limit data points to
last

Select this property to enter the number of most
recent sample values to log in the adjacent field
to the right for the selected/highlighted signal.

Decimation Select this property to enter the level of
decimation for the signal values logged for the
selected/highlighted signal.

4 Select all the signals in the Signal pane and click OK to close the Signal
Logging dialog.

5 Simulate the model.

During simulation, the Simulink model data log object logsOut is
generated in the MATLAB workspace.

6 After simulation, enter the following at the MATLAB prompt:

>> logsOut

You see the following result:

logsOut =

Simulink.ModelDataLogs (myModel):
Name Elements Simulink Class

Chart1 4 StateflowDataLogs

The display identifies logsOut as a Simulink object of type ModelDataLogs.
This is the highest level logging object. The object Chart1 appears as the
only contents of logsOut. It represents logged data for the Stateflow block
Chart1 and is identified as a Simulink object of type StateflowDataLogs.

7 At the MATLAB prompt, enter the following:

>> logsOut.Chart1

You see the following result:

15-37

15 Debugging and Testing

ans =

Simulink.StateflowDataLogs (Chart1):
Name Elements Simulink Class

('A.X.x') 1 Timeseries
A 1 Timeseries
('A.X') 1 Timeseries
B 1 Timeseries

The signals that you selected in the Signal Logging dialog appear as
Simulink objects of type Timeseries. Notice that the signals for the activity
of state X and the value of data x appear as ('A.X') and ('A.X.x'),
respectively. Because of the way that logged signals are stored for Stateflow,
you need to use this notation to access logged data for Stateflow objects
below chart level in the Stateflow diagram.

8 At the MATLAB prompt, enter the following:

>> logsOut.Chart1.('A.X.x')

You see the following result:

ans =

Name: 'A.X.x'
BlockName: 'StateflowChart/A.X.x'
PortIndex: 1

SignalName: 'A.X.x'
ParentName: 'A.X.x'

TimeInfo: [1x1 Simulink.TimeInfo]
Time: [114x1 double]
Data: [114x1 double]

The logging object for the data x, ('A.X.x'), is actually a structure of
logged data pertinent to x. The actual logged signal values for x are
contained in the Data object, a vector of 114 values. For example, if you
were to enter the MATLAB command logsOut.Chart1.(’A.X.x’).Data, a long
stream of data would appear. A better way to see the logged values of x is
to use the plot method shown in the next step.

15-38

Monitoring Stateflow Test Points

9 At the MATLAB prompt, plot the values of x with the following command:

>> logsOut.Chart1.('A.X.x').plot

You see the following result:

The preceding plot exhibits the expected results for the value of x. It is
incremented for 10 time steps before resetting to 0 when states X and A are
exited and state B is entered in the Stateflow diagram.

The preceding example is a demonstration of some of the capabilities you
have for reporting logged Stateflow data. Stateflow data conforms to the
general rules for handling logging signals in Simulink. For more information
on how you can use and manipulate logged data with commands and scripts
in MATLAB, see “Logging Signals” in the Simulink documentation.

15-39

15 Debugging and Testing

Using a Floating Scope to Monitor Data Values and
State Activity
In the steps of this topic, you configure a Floating Scope block to monitor a
data value and the activity of a state in the following example model:

The model consists of a Floating Scope block and a Stateflow block. The
Stateflow diagram for the Stateflow block starts by adding an increment of
.02 for 10 samples to the data x1. For the next 10 samples, an increment
of .2 is added, and the cycle repeats.

1 Double-click the Floating Scope block.

A Floating Scope window appears, already scaled for this example.

15-40

Monitoring Stateflow Test Points

2 In the Floating Scope window, select the Signal Selection tool .

The Signal Selector dialog appears with a hierarchy of Simulink blocks
for the model.

3 In the Model hierarchy pane, select the Stateflow block whose signals
you want to monitor and, in the List contents pane, select the data you
want to monitor.

15-41

15 Debugging and Testing

In the preceding example, the block named Chart is selected in the Model
hierarchy pane, and the data x1 and the activity of state A are selected in
the Contents pane.

4 Simulate the model.

When the example model is simulated, you receive a signal trace for x1 and
for the activity of state A, as shown.

15-42

Monitoring Stateflow Test Points

Notice that when state A is active, its activity signal value is 1, and when it
is inactive, its signal value is 0. Because this value is very low or very high
compared to some data, you might want to put it in a second Floating Scope
block to compare it with other data.

15-43

15 Debugging and Testing

Understanding Model Coverage for Stateflow Charts
Model coverage is a measure of how thoroughly a model is tested. The Model
Coverage tool helps you to validate your model tests by measuring model
coverage for your tests. It determines the extent to which a model test case
exercises simulation control flow paths through a model. The percentage of
paths that a test case exercises is called its model coverage.

Note The Model Coverage tool requires a Simulink Verification and
Validation license.

For an understanding of how to generate and interpret model coverage reports
for your Stateflow charts, see the following topics:

• “Making Model Coverage Reports” on page 15-45 — Gives you an overview
of how model coverage reports are generated and how they are interpreted.

• “Specifying Coverage Report Settings” on page 15-45 — Gives you the
settings you need to specify for each available model coverage report option.

• “Cyclomatic Complexity” on page 15-46 — Explains the cyclomatic
complexity results you see on model coverage reports.

• “Decision Coverage” on page 15-46 — Explains the decision coverage
results you see on model coverage reports if you select it for the report.

• “Condition Coverage” on page 15-51 — Explains the condition coverage
results you see on model coverage reports if you select it for the report.

• “MCDC Coverage” on page 15-51 — Explains the MCDC (modified
condition decision coverage) results you see on model coverage reports if
you select it for the report.

• “Coverage Reports for Stateflow Charts” on page 15-51 — Describes
different parts of a model coverage report for Stateflow charts.

• “Colored Stateflow Diagram Coverage Display” on page 15-61 — Describes
an option for displaying model coverage information directly in Stateflow
diagrams with context-sensitive access.

15-44

Understanding Model Coverage for Stateflow Charts

Stateflow provides model coverage for other Stateflow objects that incorporate
logical decisions in the following sections:

• “Model Coverage for Truth Tables” on page 12-58

• “Model Coverage for an Embedded MATLAB Function” on page 13-22

Making Model Coverage Reports
Model Coverage reports are generated during simulation if you specify them
(see “Specifying Coverage Report Settings” on page 15-45). For Stateflow
charts, the Model Coverage tool records the execution of the chart itself and
the execution of its states, transition decisions, and the individual conditions
that compose each decision. When simulation is finished, the Model Coverage
report tells you how thoroughly a model has been tested, in terms of how
many times each exclusive substate is entered, executed, and exited based
on the history of the superstate, how many times each transition decision
has been evaluated as true or false, and how many times each condition
(predicate) has been evaluated as true or false.

Note You must have the Simulink Verification and Validation installed on
your system to use the Model Coverage tool.

Specifying Coverage Report Settings
Coverage report settings appear in the Coverage Settings dialog. Access
this dialog by selecting Coverage settings from the Tools menu in a
Simulink model window.

Selecting the Generate HTML Report option on the Coverage Settings
dialog causes Simulink to create an HTML report containing the coverage
data generated during simulation of the model. Simulink displays the report
in the MATLAB Help browser at the end of simulation.

Selecting the Generate HTML Report option also enables the selection
of different coverages that you can specify for your reports. The following
sections address only those coverage metrics that have direct bearing on
reports for the Stateflow charts. These include decision coverage, condition
coverage, and MCDC coverage. For a complete discussion of all dialog fields

15-45

15 Debugging and Testing

and entries, consult the “Specifying Model Coverage Reporting Options”
section in the Simulink Verification and Validation documentation.

Cyclomatic Complexity
Cyclomatic complexity is a measure of the complexity of a software module
based on its edges, nodes, and components within a control-flow graph. It
provides an indication of how many times you need to test the module.

The calculation of cyclomatic complexity is as follows:

CC = E - N + p

where CC is the cyclomatic complexity, E is the number of edges, N is the
number of nodes, and p is the number of components.

Within the Model Coverage tool, each decision is exactly equivalent to a
single control flow node, and each decision outcome is equivalent to a control
flow edge. Any additional structure in the control-flow graph is ignored
since it contributes the same number of nodes as edges and therefore has no
effect on the complexity calculation. This allows cyclomatic complexity to be
reexpressed as follows:

CC = OUTCOMES - DECISIONS + p

For analysis purposes, each chart is considered to be a single component.

Decision Coverage
Decision coverage interprets a model execution in terms of underlying
decisions where behavior or execution must take one outcome from a set of
mutually exclusive outcomes.

Note Full coverage for an object of decision means that every decision has
had at least one occurrence of each of its possible outcomes.

Decisions belong to an object making the decision based on its contents or
properties. The following table lists the decisions recorded for model coverage

15-46

Understanding Model Coverage for Stateflow Charts

for the Stateflow objects owning them. The sections that follow the table
describe these decisions and their possible outcomes.

Object Possible Decisions

Chart If a chart is a triggered Simulink block, it must decide
whether or not to execute its block. See “Chart as a Triggered
Simulink Block Decision” on page 15-47.

If a chart contains exclusive (OR) substates, it must decide
which of its states to execute. See “Chart Containing
Exclusive OR Substates Decision” on page 15-47.

State If a state is a superstate containing exclusive (OR) substates,
it must decide which substate to execute. See “Superstate
Containing Exclusive OR Substates Decision” on page 15-48.

If a state has on event name actions (which might include
temporal logic operators), the state must decide whether or
not to execute the actions. See “State with On Event_Name
Action Statement Decision” on page 15-50.

Transition If a transition is a conditional transition, it must decide
whether or not to exit its active source state or junction and
enter another state or junction. See “Conditional Transition
Decision” on page 15-50.

Chart as a Triggered Simulink Block Decision
If the chart is a triggered block in Simulink, the decision to execute the block
is tested. If the block is not triggered, there is no decision to execute the block,
and the measurement of decision coverage is not applicable (NA).

See “Chart as Subsystem Details Report Section” on page 15-53.

Chart Containing Exclusive OR Substates Decision
If the chart contains exclusive (OR) substates, the decision on which substate
to execute is tested. If the chart contains only parallel AND substates, this
coverage measurement is not applicable (NA).

See “Chart as Superstate Details Report Section” on page 15-54.

15-47

15 Debugging and Testing

Superstate Containing Exclusive OR Substates Decision
Since a diagram is hierarchically processed from the top down, procedures
such as exclusive (OR) substate entry, exit, and execution are sometimes
decided by the parenting superstate.

Note Decision coverage for superstates applies to exclusive (OR) substates
only. A superstate makes no decisions for its parallel (AND) substates.

Since a superstate must decide which of its exclusive (OR) substates to process,
the number of decision outcomes for the superstate is equal to the number
of exclusive (OR) substates that it contains. In the examples following, the
choice of which substate to process is made in one of three possible contexts.

Note Implicit transitions are shown as dashed lines in the following examples.

1 Active Call

In the following example, states A and A1 are active.

This gives rise to the following superstate/substate decisions:

15-48

Understanding Model Coverage for Stateflow Charts

• The parent of states A and B must decide which of these states to process.
This decision belongs to the parent. Since A is active, it is processed.

• State A, the parent of states A1 and A2, must decide which of these states to
process. This decision belongs to state A. Since A1 is active, it is processed.

During processing of state A1, all its outgoing transitions are tested. This
decision belongs to the transition and not to its parent state A. In this case,
the transition marked by condition C2 is tested and a decision is made
whether to take the transition to A2 or not. See “Conditional Transition
Decision” on page 15-50.

1 Implicit Substate Exit Context

In the following example, a transition takes place whose source is
superstate A and whose destination is state B. If the superstate has two
exclusive (OR) substates, it is the decision of superstate A as to which
of these substates will perform the implicit transition from substate to
superstate.

2 Substate Entry with a History Junction

A history junction, similar to the one shown in the example following,
provides a superstate with the means of recording which of its substates
was last active before the superstate was exited. If that superstate now
becomes the destination of one or more transitions, the history junction
provides it the means of deciding which previously active substate to enter.

15-49

15 Debugging and Testing

See “State Details Report Section” on page 15-55.

State with On Event_Name Action Statement Decision
A state that has an on event_name action statement must decide whether to
execute that statement based on the reception of a specified event or on an
accumulation of the specified event when using temporal logic operators.

See “State Labels” on page 2-9 and “Using Temporal Logic in Actions” on
page 8-51.

Conditional Transition Decision
A conditional transition is a transition with a triggering event and/or a
guarding condition (see “Transition Label Notation” on page 2-15). In a
conditional transition from one state to another, the decision to exit one state
and enter another is credited to the transition itself.

See “Transition Details Report Section” on page 15-57.

Note Only conditional transitions receive decision coverage. Transitions
without decisions are not applicable to decision coverage.

15-50

Understanding Model Coverage for Stateflow Charts

Condition Coverage
Condition coverage reports on the extent to which all possible outcomes are
achieved for individual subconditions composing a transition decision.

Note Full condition coverage means that all possible outcomes occurred for
each subcondition in the test of a decision.

For example, for the decision [A & B & C] on a transition, condition coverage
reports on the true and false occurrences of each of the subconditions A, B,
and C. This results in six possible outcomes: true and false for each of three
subconditions.

See “Transition Details Report Section” on page 15-57.

MCDC Coverage
The Modified Condition Decision Coverage (MCDC) option reports a test’s
coverage of occurrences in which changing an individual subcondition within
a transition results in changing the entire transition trigger expression from
true to false or false to true.

Note If matching true and false outcomes occur for each subcondition,
coverage is 100%.

For example, if a transition executes on the condition [C1 & C2 & C3 | C4
& C5], the MCDC report for that transition shows actual occurrences for
each of the five subconditions (C1, C2, C3, C4, C5) in which changing its
result from true to false is able to change the result of the entire condition
from true to false.

See “Transition Details Report Section” on page 15-57.

Coverage Reports for Stateflow Charts
The following sections of a Model Coverage report were generated by
simulating the Bang-Bang Boiler demonstration model, which includes

15-51

15 Debugging and Testing

the Stateflow Chart block Bang-Bang Controller. The coverage metrics for
Decision Coverage, Condition Coverage, and MCDC Coverage are
enabled for this report; the Look-up Table Coverage metric is Simulink
dependent and not relevant to the coverage of Stateflow charts.

This topic contains the following subtopics:

• “Summary Report Section” on page 15-52

• “Chart as Subsystem Details Report Section” on page 15-53

• “Chart as Superstate Details Report Section” on page 15-54

• “State Details Report Section” on page 15-55

• “Transition Details Report Section” on page 15-57

For information on the model coverage of truth tables, see “Model Coverage
for Truth Tables” on page 12-58.

Summary Report Section

The Summary section shows coverage results for the entire test. It appears
at the beginning of the Model Coverage report after the listing of the Start
and End execution times for the test (simulation).

Each line in the hierarchy summarizes the coverage results at its level and
the levels below it. It includes a hyperlink to a later section in the report with

15-52

Understanding Model Coverage for Stateflow Charts

the same assigned hierarchical order number that details that coverage and
the coverage of its children.

The top level, sf_boiler, is the model itself. The second level, Bang-Bang
Controller, is the Simulink Stateflow chart block. The next levels are
superstates within the Stateflow chart control logic in order of hierarchical
containment. Each of these superstates uses an SF: prefix. The bottom level,
Boiler Plant model, is an additional subsystem in the model.

Chart as Subsystem Details Report Section

The Subsystem report sees the chart as a block in a Simulink model, instead
of a chart with states and transitions. You can confirm this by taking the
hyperlink of the subsystem name in the title; it takes you to a highlighted
Bang-Bang Controller Stateflow block sitting in its resident Simulink block
diagram.

15-53

15 Debugging and Testing

Chart as Superstate Details Report Section

The Chart report sees a Stateflow chart as the superstate container of all of
its states and transitions. You can confirm this through the hyperlinked chart
name, which takes you to a display of the control logic chart in the Stateflow
diagram editor.

Cyclomatic complexity and decision coverage are also displayed for the chart
and for the chart including its descendants. Condition coverage and MCDC
are both not applicable (NA) coverages for a chart, but apply to descendants.

15-54

Understanding Model Coverage for Stateflow Charts

State Details Report Section

The example state section contains a report on the state On. The Stateflow
diagram for On is as follows:

15-55

15 Debugging and Testing

On resides in the box Heater, which has its own details report (not shown)
because it contains other Stateflow objects. However, because On is a
superstate containing the two states HIGH and NORM along with a history
junction and the function warm, it has its own numbered report in the Details
section.

The decision coverage for the On state tests the decision of which of its states
to execute. The results indicate that six of a possible six outcomes were tested
during simulation. Each decision is described as follows:

1 The choice of which substate to execute when On is executed

2 The choice of which state to exit when On is exited

3 The choice of which substate to enter when On is entered and the History
junction has a record of the previously active substate

Because each of the above decisions can result in processing either HIGH or
NORM, the total possible outcomes are 3 x 2 = 6.

The decision coverage tables also display the number of occurrences for each
decision and the number of times each state was chosen. For example, the

15-56

Understanding Model Coverage for Stateflow Charts

first decision was made 124 times. Of these, the HIGH state was executed 88
times and the NORM state was executed 36 times.

Cyclomatic complexity and decision coverage are also displayed for the On
state including its descendants. This includes the coverage discussed above
plus the decision required by the condition [warm()] for the transition from
HIGH to NORM for a total of eight outcomes. Condition coverage and MCDC
are both not applicable (NA) coverages for a state.

Note Nodes and edges that make up the cyclomatic complexity calculation
have no direct relationship with model objects (states, transitions, and so on).
Instead, this calculation requires a graph representation of the equivalent
control flow.

Transition Details Report Section
Reports for transitions appear under the report sections of their owning
states. They do not appear in the model hierarchy of the Summary section,
since that is based entirely on superstates owning other Stateflow objects.

15-57

15 Debugging and Testing

The decision for this transition is based on the broadcast of 40 sec events and
the condition [cold()]. If, after the reception of 40 sec events (equivalent
to a 40 second delay) the environment is cold (cold() = 1), the decision
to execute this transition and turn the Heater on is made. For other time
intervals or environment conditions, the decision is made not to execute.

For decision coverage, both the true and false evaluations for the decision
occurred. Because two of two decision outcomes occurred, coverage was full
(that is, 100%).

15-58

Understanding Model Coverage for Stateflow Charts

Condition coverage shows that only 4 of 6 condition outcomes were tested.
The temporal condition after(40,sec) is a short form expression for
sec[after(40,sec] which is actually two conditions: the event sec and the
accumulation condition after(40,sec). Consequently, there are actually
three conditions on the transition: sec, after(40,sec), and cold(). Since
each of these decisions can be true or false, there are now six possible
outcomes.

A look at the Decisions analyzed table shows each of these conditions as
a row with the recorded number of occurrences for each outcome for that
decision (true or false). Decision rows in which a possible outcome did not
occur are shaded. For example, the first and the third decision rows did not
record an occurrence of a false outcome and are therefore shaded.

In the MC/DC report, all sets of occurrences of the transition conditions are
scanned for a particular pair of decisions for each condition in which the
following are true:

• The condition varies from true to false.

• All other conditions contributing to the decision outcome remain constant.

• The outcome of the decision varies from true to false, or the reverse.

For three conditions related by an implied AND operator, these criteria can be
satisfied by the occurrence of the following conditions.

Condition Tested True Outcome False Outcome

1 TTT Fxx

2 TTT TFx

3 TTT TTF

Notice that in each line, the condition tested changes from true to false while
the other condition remains constant. Irrelevant contributors are coded with
an "x" (discussed below). If both outcomes occur during testing, coverage is
complete (100%) for the condition tested.

15-59

15 Debugging and Testing

The preceding report example shows coverage only for condition 2. The false
outcomes required for conditions 1 and 3 did not occur, and are indicated by
parentheses for both conditions. Therefore the table lines for conditions (rows)
1 and 3 are shaded in red. Thus, while condition 2 has been tested, conditions
1 and 3 have not and MCDC is 33%.

For some decisions, the values of some conditions are irrelevant under certain
circumstances. For example, in the decision [C1 & C2 & C3 | C4 & C5] the
left side of the "|" is false if any one of the conditions C1, C2, or C3 is false.
The same applies to the right side result if either C4 or C5 is false. When
searching for matching pairs that change the outcome of the decision by
changing one condition, holding some of the remaining conditions constant is
irrelevant. In these cases, the MC/DC report marks these conditions with an
"x" to indicate their irrelevance as a contributor to the result. This is shown in
the following example.

Consider the very first matched pair. Since condition 1 is true in the True
outcome column, it must be false in the matching False outcome column. This
makes the conditions C2 and C3 irrelevant for the false outcome since C1 &
C2 & C3 is always false if C1 is false. Also, since the false outcome is required
to evaluate to false, the evaluation of C4 & C5 must also be false. In this case,
a match was found with C4 = F, making condition C5 irrelevant.

15-60

Understanding Model Coverage for Stateflow Charts

Colored Stateflow Diagram Coverage Display
The Model Coverage tool displays model coverage results for individual blocks
directly in Simulink diagrams. If you enable this feature, the Model Coverage
tool does the following:

• Highlights (colors) Stateflow objects that have received model coverage
during simulation

• Provides a context-sensitive display of summary model coverage
information for each object

Caution The coverage tool only changes colors for open Stateflow at
the time coverage information is reported. When you interact with the
Stateflow diagram, such as selecting a transition or a state, colors revert to
their default values.

For details on enabling and selecting this feature in Simulink, see “Enabling
the Colored Diagram Display” in the Simulink Verification and Validation
documentation.

Displaying Model Coverage with Model Coloring
Once you enable display coverage with model coloring, anytime that the
model generates a model coverage report, individual Stateflow objects
receiving coverage are highlighted with light green or light red as shown in
the following example:

15-61

15 Debugging and Testing

Objects highlighted in light green received full coverage during testing.
Objects highlighted in light red received incomplete coverage. Objects with no
color highlighting receive no coverage at all.

Note To revert the Stateflow diagram to show original colors, select and
unselect its objects.

Along with the highlighted Stateflow diagram, a Coverage Display Window
appears, as shown.

15-62

Understanding Model Coverage for Stateflow Charts

If you click a highlighted Stateflow object, its summarized coverage appears
in the Coverage Display Window. In the preceding example, the following
summary report appears when you click the MultiFail state:

Summary coverage information appears in the Coverage Display Window
for the Stateflow object, whose hyperlinked name appears at the top of the
window. Click the hyperlink to access the appropriate section of the coverage
report for this object.

You can set the Coverage Display Window to appear for a block in response
to a hovering mouse cursor instead of a mouse click in one of two ways:

• Select the downward arrow on right side of the Coverage Display
Window, and, from the resulting menu, select Focus.

• Right-click a colored block and select Coverage display on mouse-over
from the resulting context menu.

15-63

15 Debugging and Testing

15-64

16

Exploring and Modifying
Charts

Stateflow provides you with tools for searching for objects and replacing
them with others. Learn how to search and replace objects in Stateflow in
the following sections:

Using the Model Explorer with
Stateflow Objects (p. 16-2)

Describes the Stateflow Explorer, a
powerful tool for creating, displaying,
modifying, and deleting Stateflow
objects in a Simulink model.

Using the Stateflow Search &
Replace Tool (p. 16-12)

Stateflow Search & Replace tool
searches for and replaces text
belonging to objects in Stateflow
charts.

Using the Stateflow Finder Tool
(p. 16-27)

Stateflow provides the Stateflow
Finder tool on platforms that do not
support the Simulink Find tool. This
section describes how you use the
Stateflow Finder tool to search for
objects in Stateflow.

16 Exploring and Modifying Charts

Using the Model Explorer with Stateflow Objects
The Model Explorer displays any object in the Stateflow hierarchy. You
can also use the Model Explorer as a platform for creating, modifying, and
deleting Stateflow objects. You can also display, create, modify, and delete
target objects for generating code and building the simulation application in
the Model Explorer.

You can create data, events, and targets in the Stateflow diagram editor and
in the Model Explorer. However, the Model Explorer is the only location
where you can modify and delete existing data, events, and targets.

The following topics describe the use of the Model Explorer for creating,
modifying, and deleting Stateflow objects:

• “Viewing Stateflow Objects in the Model Explorer” on page 16-3 — Tells
you how to open the Stateflow Explorer in the Stateflow diagram editor.

• “Editing States or Charts in the Model Explorer” on page 16-5 — Shows
you how to edit states and charts from the Stateflow Explorer.

• “Adding Data and Events in the Model Explorer” on page 16-6 — Shows
you how to create data in the Model Explorer and objects and which of
their properties are displayed in the Stateflow Explorer.

• “Adding a Target in the Model Explorer” on page 16-6 — Describes target
objects as they appear in the Stateflow Explorer.

• “Setting Properties for Stateflow Objects in the Model Explorer” on page
16-8 — Shows you how to set the properties of data, events, and targets
from the Stateflow Explorer.

• “Moving and Copying Data, Events, and Targets in the Model Explorer” on
page 16-9 — Shows you how to move and copy events, data, and targets to
different owning objects in Stateflow Explorer.

• “Changing the Port Order of Input and Output Data and Events” on page
16-10 — Shows you how to change the order of input and output data and
event ports as they appear on the Stateflow block in the Simulink model.

• “Deleting Data, Events, and Targets in the Model Explorer” on page 16-11
— Shows you how to delete events, data, and targets in the Explorer.

16-2

Using the Model Explorer with Stateflow Objects

Viewing Stateflow Objects in the Model Explorer
Depending on what you are editing in Stateflow, you can use one of the
following methods for opening Model Explorer:

• From the toolbar menu of the Stateflow diagram editor, truth table editor,

or Embedded MATLAB Editor, select Explore .

• From the Tools menu of the Stateflow diagram editor or truth table editor,
select Explore.

• Right-click an empty area in the Stateflow diagram. From the resulting
pop-up menu, select Explore.

The Model Explorer window appears similar to the following:

16-3

16 Exploring and Modifying Charts

The Explorer main window has two panes: a Model Hierarchy pane on the
left and a Contents pane on the right. When you open the Model Explorer,
the object you are editing in Stateflow (chart, truth table, or Embedded
MATLAB function) is highlighted in the Model Hierarchy pane and its
objects are displayed in the Contents pane. In the preceding example, the
Model Explorer was opened from the truth table editor for the truth table
tt_func in the Stateflow chart myChart.

The Model Hierarchy pane displays the elements of all loaded Simulink
models, which includes Stateflow charts, and their states, boxes, and
functions. A preceding plus (+) character for an object indicates that you
can expand the display of its child objects by double-clicking the entry or by
clicking the plus (+). A preceding minus (-) character for an object indicates
that it has no child objects.

Clicking an entry in the Model Hierarchy pane selects that entry and
displays its child objects in the Contents pane. For convenience, a hypertext
link to the currently selected object in the Model Hierarchy pane is included
following the Contents of: label at the top of the Contents pane. Click
this link to display that object in its native editor. In the preceding example,
selecting the link

(Stateflow.TruthTable) myModel/myChart/myChart/tt_func

displays the truth table tt_func in the truth table editor.

By default, the Model Explorer displays event and data child objects in the
Contents pane for the selected object in the Model Hierarchy pane. To
display additional or different child Stateflow objects in the Contents pane,
do the following:

1 From the Model Explorer View menu, select List View Options.

2 In the resulting submenu, select any or all of the following individual
options: States, Transitions, Junctions, Events, or Data.

To display all of the preceding Stateflow child objects, select All Stateflow
Objects.

16-4

Using the Model Explorer with Stateflow Objects

Each type of object, whether in the Object Hierarchy or Contents pane, is
displayed with an adjacent icon. Objects that are subcharted (states, boxes,
and graphical functions) have their appearance altered by shading.

Object Icon
Icon for Subcharted
Object

Chart Not applicable

State

Box

Graphical Function

Truth Table Function Not applicable

Embedded MATLAB Function Not applicable

Data Not applicable

Event Not applicable

Target Not applicable

The display of child objects in the Contents pane includes properties for each
object, most of which are directly editable. You can also access the properties
dialog for an object from the Model Explorer. See “Setting Properties for
Stateflow Objects in the Model Explorer” on page 16-8 for more details.

Editing States or Charts in the Model Explorer
To edit a state or chart displayed in the Explorer’s Object Hierarchy pane,
do the following:

1 Right-click the object.

2 Select Edit from the resulting menu.

Stateflow displays the selected object highlighted in the Stateflow editor
in the context of its parent.

16-5

16 Exploring and Modifying Charts

Adding Data and Events in the Model Explorer
State, box, and function Stateflow objects can parent data and events. You
can also add data and events to the Simulink model to make them globally
available to all Stateflow objects in the model.

To add a data or an event to a Stateflow object or to the Simulink model,
do the following:

1 In the Model Hierarchy pane of the Model Explorer, select a Simulink
model or a Stateflow object.

2 From the Add menu, select Data or Event.

A data or event is added to the Model Explorer Contents pane with
the default name data or event. If you continue adding more data, each
new data or event is named with an integer suffix (data1, event1, data2,
event2, and so on).

You can change the displayed properties for a data or event directly in the
Model Explorer. You can also access the complete list of properties for
a data or event from the Model Explorer. See “Setting Properties for
Stateflow Objects in the Model Explorer” on page 16-8.

For more detailed examples of creating data and events in the Model
Explorer, see “Adding Events Using the Model Explorer” on page 7-5 and
“Adding Data Using the Model Explorer” on page 7-27.

Adding a Target in the Model Explorer
Targets are parented exclusively by a Simulink model. A permanent
simulation target (sfun) is automatically created when you add a Stateflow
block to a Simulink model. You can also add an RTW target to a library model
or multiple custom targets to a model in the Model Explorer as follows:

1 In the Model Explorer, in the left Model Hierarchy pane, select the
Simulink model to receive the target.

2 From the Explorer’s Add menu, select Stateflow Target.

16-6

Using the Model Explorer with Stateflow Objects

The Contents pane of the Model Explorer displays the existing default
simulation target sfun and the new custom target with the default name
untitled.

3 In the Stateflow Target Builder dialog pane on the right, enter the name
of the target and other properties. Click Apply when finished.

The simulation target for the model has the name sfun. The RTW target
for a model has the name rtw. Custom targets have names other than
sfun and rtw.

The properties you enter for the target depend on the kind of target you
create. See “How Do You Build a Target?” on page 14-5 for a guide.

Note You create RTW targets for Stateflow blocks in library models
only. Stateflow blocks in nonlibrary models use the RTW configuration
settings of the parent Simulink model (see “Configuring Stateflow Blocks
in Nonlibrary Models for Real-Time Workshop” on page 14-13).

16-7

16 Exploring and Modifying Charts

Renaming Objects in the Model Explorer
Use the following steps to rename a state, box, function, data, event, or target
objects in the Model Explorer:

1 Right-click the object row in the Contents pane of the Explorer.

A pop-up menu appears.

2 From the resulting pop-up menu, select Rename.

The Explorer redisplays the name of the selected object in a text edit box
that overlays the Name property for the object row.

3 Change the target’s name in the edit box and click outside the edit box.

You can also change the name of an object in the Model Explorer by
changing the value of its Name property. See “Setting Properties for Stateflow
Objects in the Model Explorer” on page 16-8 for details.

Setting Properties for Stateflow Objects in the Model
Explorer
To change one of the displayed properties of a displayed object in the
Contents pane of the Model Explorer, do the following:

1 In the Contents pane, click anywhere in the row of the displayed object.

This highlights the row.

2 Click an individual entry for a property column in the highlighted row.

• For text properties, such as the Name property, a text editing field with
the current text value overlays the displayed value. Edit the field and
press the Return key or click anywhere outside the edit field to apply
the changes.

• For properties with enumerated entries, such as the Scope, Trigger, or
Type properties, select from a drop-down combo box that overlays the
displayed value.

• For Boolean properties (properties that are set on or off) check or uncheck
the check box that appears in place of the displayed value.

16-8

Using the Model Explorer with Stateflow Objects

To set all the properties for an object displayed in the Model Hierarchy or
Contents pane of the Model Explorer, do the following:

1 Right-click the object.

2 Select Properties from the resulting menu.

The properties dialog for the object appears.

3 Edit the appropriate properties and select Apply or OK to apply the
changes.

To display the property dialog dynamically for the selected object in the Model
Hierarchy or Contents panes of the Model Explorer, do the following:

1 From the View menu, select Show Dialog View.

The property dialog for the selected object appears in the far right pane of
the Model Explorer.

Moving and Copying Data, Events, and Targets in
the Model Explorer

Note If you move an object to a level in the hierarchy that does not support the
Scope property for that object, the Scope is automatically changed to Local.

You can move data, event, or target objects to another parent by doing the
following:

1 Select the data, event, or target to move in the Contents pane of the
Explorer.

You can select a contiguous block of items by highlighting the first (or last)
item in the block and then using Shift+click for highlighting the last (or
first) item.

2 Click and drag the highlighted objects from the Contents pane to a new
location in the Model Hierarchy pane to change its parent.

16-9

16 Exploring and Modifying Charts

A shadow copy of the selected objects accompanies the mouse cursor during
dragging. If no parent is chosen or the parent chosen is the current parent,
the mouse cursor changes to an X enclosed in a circle, indicating an invalid
choice.

You can accomplish the same outcome by cutting or copying the selected
events, data, and targets as follows:

1 Select the event, data, and targets to move in the Contents pane of the
Explorer.

2 From the Edit menu of the Explorer, select Edit -> Cut or Copy.

If you select Cut, the selected items are deleted and are copied to the
clipboard for copying elsewhere. If you select Copy, the selected items
are left unchanged.

You can also right-click a single selection and select Cut or Copy from the
resulting menu. Explorer also uses the keyboard equivalents of Ctrl+X
(Cut) and Ctrl+C (Copy).

3 Select a new parent machine, chart, or state in the Model Hierarchy
pane of the Model Explorer.

4 From the Edit menu of the Explorer, select Edit -> Paste. The cut items
appear in the Contents pane of the Explorer.

You can also paste the cut items by right-clicking an empty part of the
Contents pane of the Explorer and selecting Paste from the resulting
menu. Explorer also uses the keyboard equivalents of Ctrl+V (Paste).

Changing the Port Order of Input and Output Data
and Events
Input data, output data, input events, and output events each have numerical
sequences of port index numbers. You can change the order of indexing for
event or data objects with a scope of Input to Simulink or Output to
Simulink in the Contents pane of the Model Explorer as follows:

1 Select one of the input or output data or event objects.

16-10

Using the Model Explorer with Stateflow Objects

2 Click the Port property for the object.

3 Enter a new value for the Port property for the object.

The remaining objects in the affected sequence are automatically assigned
a new value for their Port property.

Deleting Data, Events, and Targets in the Model
Explorer
Delete event, data, and target objects in the Contents pane of the Model
Explorer as follows:

1 Select the object.

2 Press the Delete key.

You can also select Cut from the Edit menu or Ctrl+X from the keyboard
to delete an object.

16-11

16 Exploring and Modifying Charts

Using the Stateflow Search & Replace Tool
Based on textual criteria that you specify, the Stateflow Search & Replace tool
searches for and replaces text belonging to objects in Stateflow charts. The
following topics describe the Stateflow Search & Replace tool:

• “Opening the Search & Replace Tool” on page 16-12 — Tells you how to open
the Search & Replace tool and describes the parts of the resulting dialog.

• “Using Different Search Types” on page 16-15 — Describes the different
types of text searches available in the Search & Replace tool.

• “Specify the Search Scope” on page 16-17 — Tells you how to specify the
parts of the model that you want to search.

• “Using the Search Button and View Area” on page 16-19 — Tells you how
to use the Search button and how to interpret the display of found objects.

• “Specifying the Replacement Text” on page 16-22 — Tells you what you can
specify for replacement text for the objects found by text.

• “Using the Replace Buttons” on page 16-24 — Interprets the replace
buttons available and describes their use in text replacement.

• “Search and Replace Messages” on page 16-25 — Describes the text and
defining icon for the informational and warning messages that appear in
the Full Path Name Containing Object field.

Opening the Search & Replace Tool
To display the Search & Replace dialog box, do the following:

1 Open a Stateflow chart in the Stateflow chart editor.

2 Select Search & Replace from the Stateflow Editor’s Tools menu.

16-12

Using the Stateflow Search & Replace Tool

The window name for the Search & Replace dialog box contains a full path
expression for the current Stateflow chart or machine in the following form.

(object) Machine/Subsystem/Chart

The Search & Replace dialog box contains the following fields:

• Search for

Enter search pattern text in the Search for text box. Interpretation of
the search pattern is selected with the Match case check box and the
Match Options field.

16-13

16 Exploring and Modifying Charts

• Match case

If this check box is selected, the search is case sensitive and the Search
& Replace tool finds only text matching the search pattern exactly. See
“Match case (Case Sensitive)” on page 16-15.

• Replace with

Specify the text to replace the text found when you select any of the
Replace buttons (Replace, Replace All, Replace All in This Object).
See “Using the Replace Buttons” on page 16-24.

• Preserve case

This option modifies replacement text. For an understanding of this option,
see “Replacing with Case Preservation” on page 16-23.

• Search in

By default, the Search & Replace tool searches for and replaces text only
within the current Stateflow chart that you are editing in the Stateflow
chart editor. You can select to search the machine owning the current
Stateflow chart or any other loaded machine or chart by accessing this
selection box.

• Match options

This field is unlabeled and just to the right of the Search in field. You can
modify the meaning of your search text by entering one of the selectable
search options. See “Using Different Search Types” on page 16-15.

• Object types and Field types

Under the Search in field are the selection boxes for Object types and
Field types. These selections further refine your search and are described
below. By default, these boxes are hidden; only current selections are
displayed next to their titles.

Select the right-facing arrow button in front of the title to expand a
selection box and make changes.

Select the same button (this time with a left-facing arrow) to compress
the selection box to display the settings only, or, if you want, just leave
the box expanded.

16-14

Using the Stateflow Search & Replace Tool

• Search and Replace buttons

These are described in “Using the Search Button and View Area” on page
16-19 and “Using the Replace Buttons” on page 16-24.

• View Area

The bottom half of the Search & Replace dialog box displays the result
of a search. This area is described in “A Breakdown of the View Area” on
page 16-20.

Using Different Search Types
Enter search pattern text in the Search for text box. You can use one of the
following settings in the Match options field (unlabeled and just to the right
of the Search in field) to further refine the meaning of the text entered.

Contains word
Select this option to specify that the search pattern text is a whole word
expression used in a Stateflow chart with no specific beginning and end
delimiters. In other words, find the specified text in any setting.

The following example is taken from the Sensor Failure Detection demo model.

Searching for the string fail with the Contains word option set finds both
occurrences of the string fail.

Match case (Case Sensitive)
By selecting the Match case option, you enable case-sensitive searching.
In this case, the Search & Replace tool finds only text matching the search
pattern exactly.

By clearing the Match case option, you enable case-insensitive searching.
In this case, search pattern characters entered in lower- or uppercase find

16-15

16 Exploring and Modifying Charts

matching text strings with the same sequence of base characters in lower- or
uppercase. For example, the search string "AnDrEw" finds the matching text
"andrew" or "Andrew" or "ANDREW".

Match whole word
Select this option to specify that the search pattern text in the Search for
field is a whole word expression used in a Stateflow chart with beginning
and end delimiters consisting of a blank space or a character that is not
alphanumeric and not an underscore character (_).

In the preceding example from the Sensor Failure Detection demo model, if
Match whole word is selected, searching for the string fail finds no text
within the above state. However, searching for the string "fail_state" does
find the text "fail_state" as part of the second line since it is delimited as a
word by a space on the front and a left square bracket ([) on the back.

Regular expression
Set the Match options field to Regular expression to search for text that
varies from character to character within defined limits.

A regular expression is a string composed of letters, numbers, and special
symbols that defines one or more string candidates. Some characters have
special meaning when used in a regular expression, while other characters
are interpreted as themselves. Any other character appearing in a regular
expression is ordinary, unless a backslash (\) character precedes it.

If the Match options field is set to Regular expression in the preceding
example from the Sensor Failure Detection demo model, searching for the
string "fail_" matches the "fail_" string that is part of the second line,
character for character. Searching with the regular expression "\w*_" also
finds the string "fail_". This search string uses the regular expression
shorthand "\w" that represents any part-of-word character, an asterisk (*),
which represents any number of any characters, and an underscore (_), which
represents itself.

For a list of regular expression meta characters, see the topic “Regular
Expressions” in MATLAB documentation.

16-16

Using the Stateflow Search & Replace Tool

Searching with Regular Expression Tokens
Within a regular expression, you use parentheses to group characters or
expressions. For example, the regular expression "and(y|rew)" matches
the text "andy" or "andrew". Parentheses also have the side effect of
remembering what they match so that you can recall and reuse the found text
with a special variable in the Search for field. These are referred to as tokens.

For an understanding of how to use tokens to enhance searching in the Search
& Replace tool, see the topic “Tokens” in MATLAB documentation.

You can also use tokens in the Replace with field. See “Replacing with
Tokens” on page 16-23 in for a description of using regular expression tokens
for replacing.

Preserve case
This option actually modifies replacement text and not search text. For an
understanding of this option, see “Replacing with Case Preservation” on
page 16-23.

Specify the Search Scope
You specify the search scope for your search by selecting from the field regions
discussed in the following topics:

• “Search in” on page 16-17 — Select a whole machine or individual Stateflow
chart for searching.

• “Object Types” on page 16-18 — Limit your search to text matches in the
selected object types.

• “Field Types” on page 16-18 — Limit your search to text matches for the
specified fields

Search in
You can select a whole machine or individual Stateflow chart for searching
in the Search in field. By default, the current Stateflow chart in which you
entered the Search & Replace tool is selected.

16-17

16 Exploring and Modifying Charts

To select a machine, do the following:

1 Select the down arrow of the Search in field.

A list of the currently loaded machines appears with the current machine
expanded to reveal its underlying Stateflow charts.

2 Select a machine.

To select a Stateflow chart for searching, do the following:

1 Select the down arrow of the Search in field again.

This time the displayed list contains the previously selected machine
expanded to reveal its Stateflow charts.

2 Select a chart from the expanded machine.

Object Types
Limit your search to text matches in the selected object types only when you
do the following:

1 Expand the Object types field.

2 Select one or more object types.

Field Types
Limit your search to text matches for the specified fields only by doing the
following:

1 Expand the Field types field.

2 Select one or more of the available field types

Available field types are as follows:

16-18

Using the Stateflow Search & Replace Tool

Names. Machines, charts, data, and events have valid Name fields. States
have a Name defined as the top line of their labels. You can search and
replace text belonging to the Name field of a state in this sense. However,
if the Search & Replace tool finds matching text in a state’s Name field, the
remainder of the label is subject to succeeding searches for the specified text
whether or not the label is chosen as a search target.

Note The Name field of machines and charts is an invalid target for the
Search & Replace tool. Use Simulink to change the names of machines and
charts.

Labels. Only states and transitions have labels.

Descriptions. All objects have searchable Description fields.

Document links. All objects have searchable Link fields.

Custom code. Only target objects contain custom code.

Using the Search Button and View Area
This topic contains the following subtopics:

• “A Breakdown of the View Area” on page 16-20

• “The Search Order” on page 16-21

• “Additional Display Options” on page 16-22

Click Search to initiate a single-search operation. If an object match is made,
its text fields are displayed in the Viewer pane in the middle of the Search
& Replace dialog. If the object is graphical (state, transition, junction, chart),
the matched object is displayed in a Portal pane below the Viewer pane.

16-19

16 Exploring and Modifying Charts

A Breakdown of the View Area
The view area of the Search & Replace dialog box displays found text and
its containing object, if viewable. In the preceding example, taken from the
Sensor Fuel Detection demo model, a search for the word "speed" finds the
Description field for the state Speed_Sensor_Mode. The resulting view area
display consists of the following parts:

Icon. Displays an icon appropriate to the object containing the found
text. These icons are identical to the icons used in the Model Explorer to
represent Stateflow objects displayed in “Viewing Stateflow Objects in the
Model Explorer” on page 16-3.

Full Path Name of Containing Object. This area displays the full path
name for the object containing the found text in the following format:

(<type>) <machine name>/<subsystem>/<chart
name>.[p1]...[pn].<object name> (<id>)

16-20

Using the Stateflow Search & Replace Tool

where p1 through pn denote the object’s parent states.

To display the object, click the mouse once on the full path name of the object.
If the object is a graphical member of a Stateflow chart, it is displayed in the
Stateflow chart editor. Otherwise, it is displayed as a member of its Stateflow
chart in the Stateflow Explorer.

Viewer. This area displays the found text as a highlighted part of all
search-qualified text fields for the owner object. If other occurrences exist in
these fields, they too are highlighted, but in lighter shades.

To invoke the Properties dialog box for the owner object, double-click
anywhere in the view area.

Portal. This area contains a graphic display of the object containing the
matching text. The object containing the found text is highlighted in blue
(default).

To display the highlighted object in the Stateflow chart editor window,
double-click anywhere in the portal.

The Search Order
If you specify an entire machine as your search scope in the Search in field,
the Search & Replace tool starts searching at the beginning of the first chart
of the model, regardless of the Stateflow chart displayed in the Stateflow
chart editor when you begin your search. After searching the first chart, the
Search & Replace tool continues searching each chart in model order until all
charts for the model have been searched.

If you specify a Stateflow chart as your search scope, the Search & Replace
tool begins searching at the beginning of the chart. The Search & Replace tool
continues searching the chart until all the chart’s objects have been searched.

The search order taken in searching an individual chart for matching text is
equivalent to a depth-first search of the Stateflow Explorer. Starting at the
highest level of the chart, the Explorer hierarchy is traversed downward from
parent to child until an object with no child is encountered. At this point, the

16-21

16 Exploring and Modifying Charts

hierarchy is traversed upward through objects already searched until an
unsearched sibling is found and the process is repeated.

Additional Display Options
Right-click anywhere in the Search & Replace dialog to display a menu
with the following selections.

Selection Result

Show Portal A toggle switch that hides or displays the portal.

Edit Displays the object with the matching text in the
Stateflow chart editor. Applies to states, junctions,
transitions, and charts.

Explore Displays the object with the matching text in the
Stateflow Explorer. Applies to states, data, events,
machines, charts, and targets.

Properties Displays the Properties dialog box for the object
with the matching text.

Note The Edit, Explore, and Properties selections are enabled only after a
successful search.

If the portal is not visible, you can select the Show Portal option to display
it. You can also simply click and drag the border between the viewer and the
portal (the cursor turns to a vertical double arrow), which resides just above
the bottom boundary of the Search & Replace dialog. Moving this border
allows you to exchange area between the portal and the viewer. If you click
and drag the border with the left mouse button, the graphic display resizes
after you reposition the border. If you click and drag the border with the right
mouse button, the graphic display continuously resizes as you move the border.

Specifying the Replacement Text
The Search & Replace tool replaces found text with the exact (case-sensitive)
text you entered in the Replace With field unless you choose one of the
dynamic replacement options described below.

16-22

Using the Stateflow Search & Replace Tool

Replacing with Case Preservation
If you choose the Case Preservation option, matched text is replaced based
on one of the following conditions discovered in the found text:

• Whisper

In this case, the found text has no uppercase characters, only lowercase.
Found text is replaced entirely with the lowercase equivalent of all
replacement characters. For example, if the replacement text is "ANDREW",
the found text "bill" is replaced by "andrew".

• Shout

In this case, the found text contains only uppercase characters. Found
text is replaced entirely with the uppercase equivalent of all replacement
characters. For example, if the replacement text is "Andrew", the found
text "BILL" is replaced by "ANDREW".

• Proper

In this case, the found text contains uppercase characters in the first
character position of each word. Found text is replaced entirely with
the case equivalent of all replacement characters. For example, if the
replacement text is "andrew johnson", the found text "Bill Monroe"
is replaced by "Andrew Johnson".

• Sentence

In this case, the found text contains an uppercase character in the first
character position of a sentence with all remaining sentence characters in
lowercase. Found text is replaced in like manner, with the first character
of the sentence given an uppercase equivalent and all remaining sentence
characters set to lowercase. For example, if the replacement text is "andrew
is tall.", the found text "Bill is tall." is replaced by "Andrew is
tall.".

Replacing with Tokens
Within a regular expression, you use parentheses to group characters or
expressions. For example, the regular expression "and(y|rew)" matches the
text "andy" or "andrew". Parentheses also have the side effect of remembering
what they matched so that you can recall and reuse the found text with a
special variable in the Replace with field. These are referred to as tokens.

16-23

16 Exploring and Modifying Charts

Tokens outside the search pattern have the form $1,$2,...,$n (n<17) and
are assigned left to right from parenthetical expressions in the search string.

For example, the search pattern "(\w*)_(\w*)" finds all word expressions
with a single underscore separating the left and right sides of the word. If you
specify an accompanying replacement string of "$2_$1", you can replace all
these expressions by their reverse expression with a single Replace all. For
example, the expression "Bill_Jones" is replaced by "Jones_Bill" and the
expression "fuel_system" is replaced by "system_fuel".

For a clearer understanding of how tokens are used in regular expression
search patterns, see “Regular Expressions” in MATLAB documentation.

Using the Replace Buttons
You can activate the replace buttons (Replace, Replace All, Replace All in
This Object) only after a search that finds text.

Replace
When you select the Replace button, the current instance of text matching
the text string in the Search for field is replaced by the text string entered
in the Replace with field. The Search & Replace tool then automatically
searches for the next occurrence of the Search for text string.

Replace All
When you select the Replace All button, all instances of text matching the
Search for field are replaced by the text string entered in the Replace with
field. Replacement starts at the point of invocation to the end of the current
Stateflow chart. This means that if you initially skip through some search
matches with the Search button, they are also skipped when you select the
Replace All button.

If the search scope is set to Search Whole Machine, then after finishing
the current Stateflow chart, replacement continues to the completion of all
remaining charts in your Simulink model.

16-24

Using the Stateflow Search & Replace Tool

Replace All in This Object
When you select the Replace All in This Object button, all instances of text
matching the Search for field are replaced by text entered in the Replace
with field everywhere in the current Stateflow object regardless of previous
searches.

Search and Replace Messages
Informational and warning messages appear in the Full Path Name
Containing Object field along with a defining icon.

– Informational Messages

– Warnings

The following messages are informational only:

Please specify a search string
A search was attempted without a search string specified.

No Matches Found
There are no matches within the selected search scope.

Search Completed
There are no more matches within the selected search scope.

The following messages are warnings that refer to invalid conditions for
searching or replacing:

Invalid option set
The object types and field types that you have selected are incompatible. For
example, a search on Custom Code fields without selecting target objects is
invalid.

16-25

16 Exploring and Modifying Charts

Match object not currently editable
The found object is not editable by replacement because of one of the following.

Problem Solution

A simulation is running. Stop the simulation.

You are editing a locked library
block.

Unlock the library.

The current object or its parent has
been manually locked.

Unlock the object or its parent.

The following messages are warnings that, when the Search & Replace tool
performs a search or replacement immediately after finding an object, it must
first refind the object and its matching text field. If that original found object
is deleted or changed before an ensuing search or replacement, the Search &
Replace tool cannot continue:

Search object not found
If you search for text, find it, and then delete the containing object, this
warning results if you continue to search.

Match object not found
If you search for text, find it, and then delete the containing object, this
warning results if you perform a replacement.

Match not found
If you search for text, find it, and then change the object containing the text,
this warning results if you perform a replacement.

Search string changed
If you search for text, find it, and then change the Search For field, this
warning results if you perform a replacement.

16-26

Using the Stateflow Finder Tool

Using the Stateflow Finder Tool
There are two varieties of tools that search only for Stateflow, depending on
your platform. These are as follows:

• On most platforms, when you select Find from the Stateflow Editor’s Tools
menu, the Simulink Find dialog appears. This tool allows you to search
Stateflow models for Simulink and Stateflow objects, such as states and
transitions, that meet criteria you specify. Simulink displays any objects
that satisfy the search criteria in the dialog box’s search results pane.

• On platforms that do not support the Simulink Find tool, the original
Stateflow Finder appears when you select Find from the Stateflow Editor’s
Tools menu. The following topics explain how to use the original Stateflow
Finder to search for objects.

- “Opening Stateflow Finder” on page 16-27 — Tells you how to open the
Stateflow Finder tool.

- “Using Stateflow Finder” on page 16-28 — Describes the fields and
selections available for describing the objects you want to find.

- “Finder Display Area” on page 16-31 — Describes the display columns
for found items in the display area.

Note See the Simulink Release Notes in the online documentation for a
list of platforms on which the Simulink Find tool is not available.

Opening Stateflow Finder
On platforms that do not support the Simulink Find tool (see preceding note),
display the Stateflow Finder dialog box with one of the following:

• Select Find from the Stateflow Editor’s Tools menu.

• Select Find from the Simulink model window’s Edit menu.

The Finder operates on the machine whose name appears in the window title
area of the Finder dialog as shown:

16-27

16 Exploring and Modifying Charts

Using Stateflow Finder
The following topics in this section describe the parts of the Stateflow Finder:

• “String Criteria” on page 16-28

• “Search Method” on page 16-29

• “Object Type” on page 16-30

• “Find Button” on page 16-30

• “Matches” on page 16-30

• “Refine Button” on page 16-30

• “Search History” on page 16-31

• “Clear Button” on page 16-31

• “Close Button” on page 16-31

• “Help Button” on page 16-31

String Criteria
You specify the string by entering the text to search for in the Look for text
box. The search is case sensitive. All text fields are included in the search by
default. Alternatively, you can search in specific text fields by using the Look
in list box to choose one of these options:

Any. Search the state and transition labels, object names, and descriptions of
the specified object types for the string specified in the Look for field.

16-28

Using the Stateflow Finder Tool

Label. Search the state and transition labels of the specified object types for
the string specified in the Look for field.

Name. Search the Name fields of the specified object types for the string
specified in the Look for field.

Description. Search the Description fields of the specified object types for
the string specified in the Look for field.

Document Link. Search the Document link fields of the specified object
types for the string specified in the Look for field.

Custom Code. Search custom code for the string specified in the Look for
field.

Search Method
By default the Search Method is Normal/Wildcard (regular expression).
Alternatively, you can click the Exact Word match option if you are
searching for a particular sequence of one or more words.

A regular expression is a string composed of letters, numbers, and special
symbols that define one or more strings. Some characters have special
meaning when used in a regular expression, while other characters are
interpreted as themselves. Any other character appearing in a regular
expression is ordinary, unless a \ precedes it.

These are the special characters supported by Stateflow Finder.

Character Description

^ Start of string

$ End of string

. Any character

\ Quote the next character

* Match zero or more

16-29

16 Exploring and Modifying Charts

Character Description

+ Match one or more

[] Set of characters

Object Type
Specify the object types to search by toggling the check boxes. A check mark
indicates that the object is included in the search criteria. By default, all object
types are included in the search criteria. Object Types include the following:

• States

• Transitions

• Junctions

• Events

• Data

• Targets

Find Button
Click the Find button to initiate the search operation. The data dictionary is
queried and the results are listed in the display area.

Matches
The Matches field displays the number of objects that match the specified
search criteria.

Refine Button
After the results of a search are displayed, enter additional search criteria and
click Refine to narrow the previously entered search criteria. An ampersand
(&) is prefixed to the search criteria in the Search History field to indicate a
logical AND with any previously specified search criteria.

16-30

Using the Stateflow Finder Tool

Search History
The Search History text box displays the current search criteria. Click the
pull-down list to display search refinements. An ampersand is prefixed to the
search criteria to indicate a logical AND with any previously specified search
criteria. You can undo a previously specified search refinement by selecting
a previous entry in the search history. By changing the Search History
selection you force the Finder to use the specified criteria as the current,
most refined, search output.

Clear Button
Click Clear to clear any previously specified search criteria. Results are
removed and the search criteria are reset to the default settings.

Close Button
Click Close to close the Finder.

Help Button
Click Help to display the Stateflow documentation in an HTML browser
window.

Finder Display Area
The Finder display area has an appearance similar to the following.

16-31

16 Exploring and Modifying Charts

The display area displays found entries with the following columns:

Field Description

Type The object type is listed in this field. States with exclusive
(OR) decomposition are followed by an (O). States with
parallel (AND) decomposition are followed by (A).

Label The string label of the object is listed in this field.

Chart The title of the Stateflow diagram (Stateflow block) is listed
in this field.

Parent This object’s parent in the hierarchy.

Source Source object of a transition.

Destination Destination object of a transition.

All fields are truncated to maintain column widths. The Parent, Source, and
Destination fields are truncated from the left so that the name at the end of
the hierarchy is readable. The entire field contents, including the truncated
portion, are used for resorting.

Each field label is also a button. Click the button to have the list sorted based
on that field. If the same button is pressed twice in a row, the sort ordering
is reversed.

You can resize the Finder vertically to display more output rows, but you
cannot expand it horizontally.

Click a graphical entry to highlight that object in the graphical editor window.
Double-click an entry to invoke the Properties dialog box for that object.
Right-click the entry to display a menu that allows you to explore, edit, or
display the properties of that entry.

Representing Hierarchy
The Finder displays Parent, Source, and Destination fields to represent
the hierarchy. The Stateflow diagram is the root of the hierarchy and is
represented by the / character. Each level in the hierarchy is delimited by a
period (.) character. The Source and Destination fields use the combination

16-32

Using the Stateflow Finder Tool

of the tilde (~) and the period (.) characters to denote that the state listed
is relative to the Parent hierarchy.

Using the following Stateflow diagram as an example, what are the values
for the Parent, Source, and Destination fields for the transition from A2a
to A2b?

The A2a to A2b transition is within state A2. State A2’s parent is state A
and state A’s parent is the Stateflow diagram itself. The notation for state
A2a’s parent is /A.A2. State A2a is the transition source and state A2b is
the destination. These states are at the same level in the hierarchy. The
relative hierarchy notation for the source of the transition is ~.A2a. The full
path is /A.A2.A2a. The relative hierarchy notation for the destination of the
transition is ~.A2b. The full path is /A.A2.A2b.

16-33

16 Exploring and Modifying Charts

16-34

A

Semantic Rules Summary

Stateflow semantics describe how the notation in Stateflow charts is
interpreted and implemented into a behavior. Knowledge of Stateflow
semantics is important to make sound Stateflow diagram design decisions
for code generation. Different notations result in different behavior during
simulation and generated code execution. This appendix contains a short
summary of the rules that Stateflow abides by in executing a Stateflow
diagram.

• “Entering a Chart” on page A-2

• “Executing an Active Chart” on page A-2

• “Entering a State” on page A-2

• “Executing an Active State” on page A-3

• “Exiting an Active State” on page A-3

• “Executing a Set of Flow Graphs” on page A-3

• “Executing an Event Broadcast” on page A-4

A Semantic Rules Summary

Entering a Chart
The set of default flow paths is executed (see “Executing a Set of Flow
Graphs” on page A-3). If this does not cause a state entry and the chart has
parallel decomposition, then each parallel state is entered (see “Entering a
State” on page A-2).

If executing the default flow paths does not cause state entry, a state
inconsistency error occurs.

Executing an Active Chart
If the chart has no states, each execution is equivalent to initializing a chart.
Otherwise, the active children are executed. Parallel states are executed in
the same order that they are entered.

Entering a State
1 If the parent of the state is not active, perform steps 1-4 for the parent.

2 If this is a parallel state, check that all siblings with a higher (i.e., earlier)
entry order are active. If not, perform all entry steps for these states first.

3 Mark the state active.

4 Perform any entry actions.

5 Enter children, if needed:

a If the state contains a history junction and there was an active child
of this state at some point after the most recent chart initialization,
perform the entry actions for that child. Otherwise, execute the default
flow paths for the state.

b If this state has parallel decomposition, i.e., has children that are parallel
states, perform entry steps 1-5 for each state according to its entry order.

A-2

Executing an Active State

6 If this is a parallel state, perform all entry actions for the sibling state next
in entry order if one exists.

7 If the transition path parent is not the same as the parent of the current
state, perform entry steps 6 and 7 for the immediate parent of this state.

Executing an Active State
1 The set of outer flow graphs is executed (see “Executing a Set of Flow

Graphs” on page A-3). If this causes a state transition, execution stops.
(Note that this step is never required for parallel states.)

2 During actions and valid on-event actions are performed.

3 The set of inner flow graphs is executed. If this does not cause a state
transition, the active children are executed, starting at step 1. Parallel
states are executed in the same order that they are entered.

Exiting an Active State
1 If this is a parallel state, make sure that all sibling states that were entered

after this state have already been exited. Otherwise, perform all exiting
steps on those sibling states.

2 If there are any active children, perform the exit steps on these states in
the reverse order they were entered.

3 Perform any exit actions.

4 Mark the state as inactive.

Executing a Set of Flow Graphs
Flow graphs are executed by starting at step 1 below with a set of starting
transitions. The starting transitions for inner flow graphs are all transition
segments that originate on the respective state and reside entirely within
that state. The starting transitions for outer flow graphs are all transition
segments that originate on the respective state but reside at least partially
outside that state. The starting transitions for default flow graphs are all
default transition segments that have starting points with the same parent:

A-3

A Semantic Rules Summary

1 A set of transition segments is ordered.

2 While there are remaining segments to test, a segment is tested for validity.
If the segment is invalid, move to the next segment in order. If the segment
is valid, execution depends on the destination:

States

a No more transition segments are tested and a transition path is formed
by backing up and including the transition segment from each preceding
junction until the respective starting transition.

b The states that are the immediate children of the parent of the transition
path are exited (see “Exiting an Active State” on page A-3).

c The transition action from the final transition segment is executed.

d The destination state is entered (see “Entering a State” on page A-2).

Junctions with no outgoing transition segments

Testing stops without any states being exited or entered.

Junctions with outgoing transition segments

Step 1 is repeated with the set of outgoing segments from the junction.

3 After testing all outgoing transition segments at a junction, back up the
incoming transition segment that brought you to the junction and continue
at step 2, starting with the next transition segment after the back up
segment. The set of flow graphs is done executing when all starting
transitions have been tested.

Executing an Event Broadcast
Output edge trigger event execution is equivalent to changing the value of an
output data value. All other events have the following execution:

1 If the receiver of the event is active, then it is executed (see “Executing an
Active Chart” on page A-2 and “Executing an Active State” on page A-3).
(The event receiver is the parent of the event unless the event was explicitly
directed to a receiver using the send() function.)

A-4

Executing an Event Broadcast

If the receiver of the event is not active, nothing happens.

2 After broadcasting the event, the broadcaster performs early return logic
based on the type of action statement that caused the event.

Action Type Early Return Logic

State Entry If the state is no longer active at the end of the event
broadcast, any remaining steps in entering a state are
not performed.

State Exit If the state is no longer active at the end of the event
broadcast, any remaining exit actions and steps in
state transitioning are not performed.

State During If the state is no longer active at the end of the event
broadcast, any remaining steps in executing an active
state are not performed.

Condition If the origin state of the inner or outer flow graph or
parent state of the default flow graph is no longer
active at the end of the event broadcast, the remaining
steps in the execution of the set of flow graphs are not
performed.

Transition If the parent of the transition path is not active or
if that parent has an active child, the remaining
transition actions and state entry are not performed.

A-5

A Semantic Rules Summary

A-6

B

The Stateflow Block

Stateflow

Purpose A version of a finite state machine for controlling a physical plant

Library Stateflow

Description

A finite state machine is a representation of an event-driven (reactive)
system. In an event-driven system, the system responds by making a
transition from one state (mode) to another prescribed state in response
to an event, provided that the condition defining the change is true.

A Stateflow diagram is a graphical representation of a finite state
machine, where states and transitions form the basic building blocks
of the system. You can also represent flow (stateless) diagrams using
Stateflow. Stateflow provides a block that you include in a Simulink
model.

Stateflow charts are usually used to control a physical plant in
response to events such as a temperature or pressure sensor, or clock
or user-driven events. For example, you can use a state machine to
represent a car’s automatic transmission. The transmission has a
number of operating states: park, reverse, neutral, drive, and low.
As the driver shifts from one position to another the system makes a
transition from one state to another, for example, from park to reverse.

The following diagram shows a simple Simulink model that has a
Stateflow block named Chart (default) that responds to input from a
manual switch:

B-2

Stateflow

If you double-click the Stateflow block in Simulink, the Stateflow
diagram that programs the Stateflow block appears in the Stateflow
diagram editor window.

B-3

Stateflow

During simulation of the Simulink model, you can interactively debug
Stateflow diagrams with animated diagrams. Stateflow diagrams
generate efficient C code for simulation, and also for Real-Time
Workshop, and custom targets, that is suitable for embedded
environments.

For an introduction to using Stateflow in Simulink models, see Getting
Started with Stateflow, the Stateflow getting started guide.

Data Type
Support

The Stateflow block accepts inputs of any type including
two-dimensional matrices and fixed-point data. Floating-point inputs
are passed through the block unchanged. Boolean inputs are treated as
uint8 signals.

For a discussion on the variable types supported by Embedded MATLAB
functions in Simulink, refer to “Data Types Supported by Simulink” in
the Using Simulink documentation.

You can declare local data of any type or size.

B-4

Stateflow

Parameters
and
Dialog
Box Note It is highly recommended that the default settings for the block

parameters of an Embedded MATLAB Function block not be changed.

Characteristics Direct Feedthrough Yes

Sample Time Specified in the Sample time
parameter

Scalar Expansion N/A

Dimensionalized Yes

Zero Crossing No

B-5

C

The Truth Table Block

Truth Table

Purpose Represents logical decision-making behavior with conditions, decisions,
and actions.

Library Stateflow

Description

The Truth Table block is an Embedded MATLAB truth table function
that you can add to a Simulink model directly. The Truth Table block
requires a Stateflow license.

There are several advantages to adding a Truth Table block directly
to a Simulink model instead of calling truth table functions from a
Stateflow chart:

• It is a more direct approach, especially if your model requires only a
single truth table.

• You can define truth table inputs and outputs to have inherited
types and sizes.

The Truth Table block supports the Embedded MATLAB language
for programming conditions and actions, and generates content as
Embedded MATLAB code. As a result, you can take advantage of
Embedded MATLAB tools to debug your Truth Table block during
simulation. For more information, see “Debugging a Stateflow
Embedded MATLAB Function” on page 13-15.

For purely logical behavior, truth tables are easier to program
and maintain than graphical functions. Truth tables also provide
diagnostics that indicate whether you have too few (under specified) or
too many (over specified) decisions for the conditions you specify. For an
introduction to truth tables, see Chapter 12, “Truth Table Functions”.

C-2

Truth Table

The following diagram shows a Simulink model
(sf_climate_control.mdl) of a home environment controller that
attempts to maintain a selected temperature and humidity. The model
has a Truth Table block (ClimateController) that responds to changes
in room temperature (input t) and humidity (input h).

Truth
Table
Editor

If you double-click the Truth Table block in the Simulink model,
the Truth Table Editor opens to display its conditions, actions, and
decisions. Here is the display for the Truth Table block named
ClimateController.

C-3

Truth Table

Note how the inputs t and h are used to define the conditions, and the
outputs heater, cooler, and humidifier are used to define the actions
for this Truth Table block. For more details, refer to the demo for this
model.

The Truth Table Editor lets you perform the following functions:

• Enter and edit conditions, actions, and decisions.

• Add or modify Stateflow data and ports using the Ports and Data
Manager.

• Run diagnostics to detect parser errors.

• View generated content after simulation.

For more information about the Truth Table Editor, see “Truth Table
Editor Operations” on page 12-72.

C-4

Truth Table

Ports
and Data
Manager

If you want to add or edit data in a Truth Table block, open the Ports
and Data Manager by clicking the Edit Data/Ports button in the Truth
Table Editor toolbar:

The Ports and Data Manager lets you add the following elements to a
Truth Table block:

Element Tool Description

Data You can add the following types of
data:

• Local

• Constant

• Parameter

• Data store memory

C-5

Truth Table

Element Tool Description

Input trigger An input trigger causes a Truth Table
block to execute when a Simulink
control signal changes or through
a Simulink block that outputs
function-call events. You can add the
following types of input triggers:

• Rising edge

• Falling edge

• Either rising or falling edge

• Function call

For more information, see “Defining
Input Events” on page 7-13.

Function call
output

A function call output triggers a
function call to a subsystem. For
more information, see “Function-Call
Subsystems” in the Simulink User’s
Guide documentation

Data Type
Support

The Truth Table block accepts signals of any data type supported by
Simulink, including fixed-point data types and frame-based signals.
Truth Table blocks work with frame-based signals in the same way as
Embedded MATLAB Function blocks (see “Working with Frame-Based
Signals” in the Using Simulink documentation).

For a discussion of data types supported by Simulink, refer to "Data
Types Supported by Simulink" in the Using Simulink documentation.

C-6

Truth Table

Parameters
and
Dialog
Box

Right-click over a Truth Table block, and from the submenu, select
Subsystem Parameters.

Characteristics Direct Feedthrough Yes

Sample Time Specified in the Sample time
parameter

Scalar Expansion N/A

Dimensionalized Yes

Zero Crossing No

C-7

Glossary

Glossary

actions
Actions take place as a part of Stateflow diagram execution. The action
can be executed as part of a transition from one state to another,
or depending on the activity status of a state. Transitions can have
condition actions and transition actions. For example,

Action language defines the categories of actions you can specify and
their associated notations. For example, states can have entry, during,
exit, and on event_name actions as shown by the following:

An action can be a function call, a broadcast event, a variable
assignment, and so on. For more information on actions and action
language, see Chapter 8, “Using Actions in Stateflow”.

API (application programming interface)
Format provided to access and communicate with an application
program from a programming or script environment.

Glossary-1

Glossary

chart instance
Link from a Stateflow model to a chart stored in a Simulink library. A
chart in a library can have many chart instances. Updating the chart in
the library automatically updates all the instances of that chart.

condition
Boolean expression to specify that a transition occurs if the specified
expression is true. For example,

In the preceding example, assume that the state second is active. If an
event occurs and the value for the data speed is greater than the value
of the data threshold, the transition between states second and third
is taken, and the state third becomes active.

connective junction
Decision points in the system. A connective junction is a graphical
object that simplifies Stateflow diagram representations and facilitates
generation of efficient code. Connective junctions provide alternative
ways to represent desired system behavior.

This example shows how connective junctions (displayed as small
circles) are used to represent the decision flow of an if code structure.

Glossary-2

Glossary

Name
Button
Icon Description

Connective
junction

One use of a connective junction is to handle
situations where transitions out of one state
into two or more states are taken based on
the same event but guarded by different
conditions.

See “Connective Junctions” on page 2-31 for more information.

data
Data objects store numerical values for reference in the Stateflow
diagram.

See “Adding Data” on page 7-27 for more information on representing
data objects.

data dictionary
Database where Stateflow diagram information is stored. When you
create Stateflow diagram objects, the information about those objects is
stored in the data dictionary once you save the Stateflow diagram.

Debugger
See Stateflow Debugger on page Glossary-10.

Glossary-3

Glossary

decomposition
A state has a decomposition when it consists of one or more substates.
A Stateflow diagram that contains at least one state also has
decomposition. Representing hierarchy necessitates some rules around
how states can be grouped in the hierarchy. A superstate has either
parallel (AND) or exclusive (OR) decomposition. All substates at a
particular level in the hierarchy must be of the same decomposition.

Parallel (AND) State Decomposition

Parallel (AND) state decomposition is indicated when states have
dashed borders. This representation is appropriate if all states at that
same level in the hierarchy are active at the same time. The activity
within parallel states is essentially independent.

Exclusive (OR) State Decomposition

Exclusive (OR) state decomposition is represented by states with solid
borders. Exclusive (OR) decomposition is used to describe system modes
that are mutually exclusive. Only one state at the same level in the
hierarchy can be active at a time.

default transition
Primarily used to specify which exclusive (OR) state is to be entered
when there is ambiguity among two or more neighboring exclusive
(OR) states. For example, default transitions specify which substate of
a superstate with exclusive (OR) decomposition the system enters by
default in the absence of any other information. Default transitions
are also used to specify that a junction should be entered by default.
A default transition is represented by selecting the default transition
object from the toolbar and then dropping it to attach to a destination
object. The default transition object is a transition with a destination
but no source object.

Glossary-4

Glossary

Name Button Icon Description

Default transition Use a default
transition to indicate,
when entering this
level in the hierarchy,
which state becomes
active by default.

See “Default Transitions” on page 2-26 for more information.

events
Events drive the Stateflow diagram execution. All events that affect the
Stateflow diagram must be defined. The occurrence of an event causes
the status of the states in the Stateflow diagram to be evaluated. The
broadcast of an event can trigger a transition to occur and/or can trigger
an action to be executed. Events are broadcast in a top-down manner
starting from the event’s parent in the hierarchy.

Events are added, removed, and edited through the Stateflow Explorer.
See “Adding Events” on page 7-4 for more information.

Explorer
A tool for displaying, modifying, and creating data and event objects for
any parent object in Stateflow. The Explorer also displays, modifies, and
creates targets for the Stateflow machine. See Stateflow Explorer
on page Glossary-11.

Finder
A tool to search for objects in Stateflow diagrams on platforms that do
not support the Simulink Find tool. See Stateflow Finder on page
Glossary-11.

finite state machine (FSM)
Representation of an event-driven system. FSMs are also used to
describe reactive systems. In an event-driven or reactive system, the
system transitions from one mode or state to another prescribed mode
or state, provided that the condition defining the change is true.

Glossary-5

Glossary

flow graph
Set of decision flow paths that start from a transition segment that, in
turn, starts from a state or a default transition segment.

flow path
Ordered sequence of transition segments and junctions where each
succeeding segment starts on the junction that terminated the previous
segment.

flow subgraph
Set of decision flow paths that start on the same transition segment.

graphical function
Function whose logic is defined by a flow graph. See “Using Functions
to Extend Actions” on page 6-29.

hierarchy
Hierarchy enables you to organize complex systems by placing states
within other higher-level states. A hierarchical design usually reduces
the number of transitions and produces neat, more manageable
diagrams. See “Stateflow Hierarchy of Objects” on page 1-21 for more
information.

history junction
Provides the means to specify the destination substate of a transition
based on historical information. If a superstate has a history junction,
the transition to the destination substate is defined to be the substate
that was most recently visited. The history junction applies to the level
of the hierarchy in which it appears.

Glossary-6

Glossary

Name Button Icon Description

History junction Use a history junction
to indicate, when
entering this level in
the hierarchy, that
the last state that
was active becomes
the next state to be
active.

See these sections for more information:

• “History Junctions” on page 2-38

• “Default Transition and a History Junction Example” on page 3-58

• “Labeled Default Transitions Example” on page 3-59

• “Inner Transition to a History Junction Example” on page 3-68

inner transitions
Transition that does not exit the source state. Inner transitions are
most powerful when defined for superstates with XOR decomposition.
Use of inner transitions can greatly simplify a Stateflow diagram.

See “Inner Transitions” on page 2-22 and “Inner Transition to a History
Junction Example” on page 3-68 for more information.

library link
Link to a chart that is stored in a library model in a Simulink block
library.

library model
Stateflow model that is stored in a Simulink library. You can include
charts from a library in your model by copying them. When you copy
a chart from a library into your model, Stateflow does not physically
include the chart in your model. Instead, it creates a link to the library
chart. You can create multiple links to a single chart. Each link is called
a chart instance. When you include a chart from a library in your model,
you also include its Stateflow machine. Thus, a Stateflow model that
includes links to library charts has multiple Stateflow machines. When

Glossary-7

Glossary

Stateflow simulates a model that includes charts from a library model, it
includes all charts from the library model even if there are links to only
some of its models. However, when Stateflow generates a stand-alone or
RTW target, it includes only those charts for which there are links. A
model that includes links to a library model can be simulated only if all
charts in the library model are free of parse and compile errors.

machine
Collection of all Stateflow blocks defined by a Simulink model. This
excludes chart instances from library links. If a model includes any
library links, it also includes the Stateflow machines defined by the
models from which the links originate.

notation
Defines a set of objects and the rules that govern the relationships
between those objects. Stateflow notation provides a common language
to communicate the design information conveyed by a Stateflow
diagram.

Stateflow notation consists of

• A set of graphical objects

• A set of nongraphical text-based objects

• Defined relationships between those objects

parallelism
A system with parallelism can have two or more states that can be
active at the same time. The activity of parallel states is essentially
independent. Parallelism is represented with a parallel (AND) state
decomposition.

See “State Decomposition” on page 2-8 for more information.

Real-Time Workshop
Automatic C language code generator for Simulink. It produces C code
directly from Simulink block diagram models and automatically builds
programs that can be run in real time in a variety of environments. See
the Real-Time Workshop documentation for more information.

Glossary-8

Glossary

rtw target
Executable built from code generated by Real-Time Workshop. See
Chapter 14, “Building Targets” for more information.

S-function
When using Simulink together with Stateflow for simulation, Stateflow
generates an S-function (MEX-file) for each Stateflow machine to
support model simulation. This generated code is a simulation target
and is called the sfun target within Stateflow.

For more information, see the Using Simulink documentation.

semantics
Semantics describe how the notation is interpreted and implemented
behind the scenes. A completed Stateflow diagram communicates how
the system will behave. A Stateflow diagram contains actions associated
with transitions and states. The semantics describe in what sequence
these actions take place during Stateflow diagram execution.

Simulink
Software package for modeling, simulating, and analyzing dynamic
systems. It supports linear and nonlinear systems, modeled in
continuous time, sampled time, or a hybrid of the two. Systems can also
be multirate, i.e., have different parts that are sampled or updated at
different rates.

It allows you to represent systems as block diagrams that you build
using your mouse to connect blocks and your keyboard to edit block
parameters. Stateflow is part of this environment. The Stateflow
block is a masked Simulink model. Stateflow builds an S-function that
corresponds to each Stateflow machine. This S-function is the agent
Simulink interacts with for simulation and analysis.

The control behavior that Stateflow models complements the algorithmic
behavior modeled in Simulink block diagrams. By incorporating
Stateflow diagrams into Simulink models, you can add event-driven
behavior to Simulink simulations. You create models that represent
both data and decision flow by combining Stateflow blocks with the
standard Simulink blocksets. These combined models are simulated
using Simulink.

Glossary-9

Glossary

The Using Simulink documentation describes how to work with
Simulink. It explains how to manipulate Simulink blocks, access
block parameters, and connect blocks to build models. It also provides
reference descriptions of each block in the standard Simulink libraries.

state
A state describes a mode of a reactive system. A reactive system has
many possible states. States in a Stateflow diagram represent these
modes. The activity or inactivity of the states dynamically changes
based on transitions among events and conditions.

Every state has hierarchy. In a Stateflow diagram consisting of a
single state, that state’s parent is the Stateflow diagram itself. A state
also has history that applies to its level of hierarchy in the Stateflow
diagram. States can have actions that are executed in a sequence based
upon action type. The action types are entry, during, exit, or on
event_name actions.

Name
Button
Icon Description

State Use a state to depict a mode of the system.

Stateflow block
Masked Simulink model that is equivalent to an empty, untitled
Stateflow diagram. Use the Stateflow block to include a Stateflow
diagram in a Simulink model.

The control behavior that Stateflow models complements the
algorithmic behavior modeled in Simulink block diagrams. By
incorporating Stateflow blocks into Simulink models, you can add
complex event-driven behavior to Simulink simulations. You create
models that represent both data and decision flow by combining
Stateflow blocks with the standard Simulink and toolbox block libraries.
These combined models are simulated using Simulink.

Stateflow Debugger
Use to debug and animate your Stateflow diagrams. Each state in the
Stateflow diagram simulation is evaluated for overall code coverage.
This coverage analysis is done automatically when the target is

Glossary-10

Glossary

compiled and built with the debug options. The Debugger can also
be used to perform dynamic checking. The Debugger operates on the
Stateflow machine.

Stateflow diagram
Using Stateflow, you create Stateflow diagrams. A Stateflow diagram is
also a graphical representation of a finite state machine where states and
transitions form the basic building blocks of the system. See “Stateflow
and Simulink” on page 1-6 for more information on Stateflow diagrams.

Stateflow Explorer
Use to add, remove, and modify data, event, and target objects. See
“Using the Model Explorer with Stateflow Objects” on page 16-2 for
more information.

Stateflow Finder
Use to display a list of objects based on search criteria you specify. You
can directly access the properties dialog box of any object in the search
output display by clicking that object. See “Using the Stateflow Finder
Tool” on page 16-27 for more information.

subchart
Chart contained by another chart. See “Using Subcharts to Extend
Charts” on page 6-6.

substate
A state is a substate if it is contained by a superstate.

superstate
A state is a superstate if it contains other states, called substates.

Glossary-11

Glossary

supertransition
Transition between objects residing in different subcharts. See
“Using Supertransitions to Extend Transitions” on page 6-12 for more
information.

target
A container object for the generated code from the Stateflow diagrams
in a model. Stateflow represents the collection of all Stateflow diagrams
for a model as a Stateflow machine. This means that target objects
belong to the Stateflow machine.

Stateflow generates code for all target types, which include Simulation,
Real-Time Workshop, and Custom targets. See Chapter 14, “Building
Targets” for more information.

topdown processing
The way in which Stateflow processes states and events. In particular,
Stateflow processes superstates before states. Stateflow processes a
state only if its superstate is activated first.

transition
The circumstances under which the system moves from one state to
another. Either end of a transition can be attached to a source and a
destination object. The source is where the transition begins and the
destination is where the transition ends. It is often the occurrence of
some event that causes a transition to take place.

transition path
Flow path that starts and ends on a state.

transition segment
A state-to-junction, junction-to-junction, or junction-to-state part of a
complete state-to-state transition. Transition segments are sometimes
loosely referred to as transitions.

Glossary-12

Glossary

virtual scrollbar
Enables you to set a value by scrolling through a list of choices. When
you move the mouse over a menu item with a virtual scrollbar, the
cursor changes to a line with a double arrowhead. Virtual scrollbars
are either vertical or horizontal. The direction is indicated by the
positioning of the arrowheads. Drag the mouse either horizontally or
vertically to change the value.

Glossary-13

Index

IndexA
abs

C library function in Stateflow action
language 8-23

calling in action language 8-24
acos in action language 8-23
action language

array arguments 8-44
assignment operations 8-16
binary operations 8-12
bit operations 8-12
comment symbols %,//,/* 8-20
condition statements 8-8
data and event arguments 8-42
defined 1-17
directed event broadcasting 8-48
event broadcasting 8-46
floating-point number precision 8-21
hexadecimal notation 8-20
infinity symbol inf 8-21
keyword identifiers 8-12
line continuation symbol 8-21
literal code symbol $ 8-21
MATLAB display symbol ; 8-21
pointer and address operations 8-17
semicolon symbol 8-21
single-precision floating point symbol F in

action language 8-21
special symbols 8-20
temporal logic 8-51
time symbol t 8-21
types of 8-3
unary operations 8-15

actions 2-15
assigning to decisions in truth table 12-37
binding function call subsystem 8-74
defined 1-17
during 2-9
entry 2-9
exit 2-9

on event_name 2-9
states 4-11
tracking rows in truth tables 12-39
unary 8-15
See also condition actions; transition actions

activation order for parallel (AND) states 4-9
active chart execution 3-6
active states 2-6

display in debugger 15-10
execution 3-23
exiting 3-23

addition (+) of fixed-point data 9-23
addition operator (+) 8-13
after

operator 8-52
animation controls in debugger 15-8
Append symbol names with parent names coder

option 14-20
arguments 8-42
array arguments in action language 8-44
Array property of data 7-36
arrays

and custom code 8-45
indexing 8-44

arrowhead size of transitions 4-20
asin in action language 8-23
assignment operations 8-16

fixed-point data 9-19 9-25
at

operator 8-55
atan in action language 8-23
atan2 in action language 8-23

B
Back To button in diagram editor 6-10
before

operator 8-54
bias (B) in fixed-point data 9-2
binary operations 8-12

Index-1

Index

fixed-point data 9-17
binary point in fixed-point data 9-5
binding function call subsystem

to state 8-74
binding function call subsystem event

example 8-78
muxed events 8-87
subsystem sampling times 8-79

bit operations 8-12
bitwise & (AND) operator 8-14
block 10-15

See also Stateflow block
bowing transitions 6-25
boxes

creating 6-45
definition 2-40
grouping 6-45

Break button on debugger 15-9
breakpoints

chart entry 15-4
display in debugger 15-10
event broadcast 15-4
functions 6-43 12-16
overview 15-4
setting global breakpoints 15-4
setting local breakpoints 15-5
state entry 15-4
states 4-10
transitions 4-23

broadcasting directed events
examples using send keyword 8-48
send function 3-96
with qualified event names 3-98

broadcasting events 8-46
in condition actions 3-54
in truth tables 12-17

Browse Data display in debugger 15-10
building targets 14-5 14-7

options for custom target 14-24
starting 14-34

bus support
using structures in Stateflow 11-1

C
C functions

library 8-23
user-written 8-25

C++ code 14-31
Call Stack display in debugger 15-10
cast operation

and type operator 8-19
cast operator 8-18
ceil in action language 8-23
change detection

about 8-60
example in Stateflow 8-71
in Stateflow 8-60

change indicator (*) in title bar 4-28
change(data_name) keyword 7-24
Changing chart types 5-24
chart libraries 10-29
chart notes. See notes (chart)
charts 6-6

checking for errors 14-37
creating 4-2
decomposition 2-8
editing 4-27 16-5
executing active charts 3-6
executing inactive charts 3-6
how they execute 3-6
printing 6-51
properties 10-6
saving model 4-2
setting properties for in Explorer 16-8
update method 4-2
update methods for defining interface 10-15
See also subcharts

charts, executing at initialization] 3-7
code generation

Index-2

Index

error messages 14-45
Code Generation Directory option 14-29
code generation files 14-47

code files 14-48
make files 14-49
.mex* files 14-47

colors in diagram editor 4-30
command line debugger 15-27
command line debugger commands 15-30
commands for command line debugger 15-30
comment symbols %,//,/* in action language 8-20
comments (chart). See notes (chart)
Comments in generated code coder option 14-17
Compact nested if-else using logical AND/OR

operators coder option 14-17
comparison operators

(>, <, >=, <=, ==, -=, !=, <>) 8-13
compilation error messages 14-46
CompiledSize property 7-73
CompiledType property

typing data
using CompiledType property 7-67

condition actions
and transition actions 3-51
event broadcasts in 3-91
examples 3-50
in for loops 3-53
simple, example of 3-50
to broadcast events 3-54
with cyclic behavior to avoid 3-54

condition coverage 15-51
definition 15-51
Embedded MATLAB functions 13-23 13-36
example 15-57
truth tables 12-62

conditional notation for temporal logic
operators 8-58

conditions
for transitions, defined 1-16
for transitions, guidelines 8-8

in function 8-8
outcomes for in truth tables 12-3

configuring
custom target 14-22
rtw target 14-13
simulation target 14-10

conflicting names in custom code 14-29
conflicting transitions

definition 15-18
detecting 15-18
example 15-18

connective junctions 2-31
backtracking transition segments to

source 3-80
common events example 2-36
common source example 2-36
creating 4-24 6-3
definition 2-31
described 1-19
examples of 3-70
flow diagrams 3-75
for loop 2-34
if-then-else decision 3-71
in flow diagrams 2-31
in for loops 3-74
in self-loop transitions 2-33
self-loop transitions 3-73
transitions based on common event 3-79
transitions from a common source 3-77
transitions from multiple sources 3-78
with default transitions 3-57

Contains word option in Search & Replace
tool 16-15

context (shortcut) menu to properties 4-29
context-sensitive constants in fixed-point

data 9-8
Continue button on debugger 15-9
continuous update method 10-16
continuous update method for Stateflow

block 10-15

Index-3

Index

copying objects in the diagram editor 4-37
corners of states 4-16
cos in action language 8-23
cosh in action language 8-23
Creation Date property of machines 10-13
Creator property of machines 10-13
custom code

building into target 14-6 14-27
building into targets 14-5
conflicting names 14-29
including C++ code 14-31
integrating with diagram 14-27
path names 14-30

Custom code included at the top of generated
code option 14-28

Custom include directory paths option 14-29
Custom initialization code option 14-29
Custom source files option 14-29
custom target

configuring 14-22
custom targets

code generation options 14-24
Custom termination code option 14-29
customizing

Stateflow Editor menus 4-47
cutting objects in diagram editor 4-37
cyclic behavior

debugging 15-22
definition 15-22
example 15-22
example of nondetection 15-23
in condition actions 3-54
noncyclic behavior flagged as cyclic

example 15-24
cyclomatic complexity

in model coverage reports 15-46

D
dashed transitions 4-19

data 7-46 9-1 9-17
adding (creating) in Stateflow 7-27
copying/moving in Explorer 16-9
defined 1-15
deleting 16-11
dictionary 2-5
displaying logged data values 15-37
exported 10-35
exporting to external modules 7-60
fixed-point 9-1 9-17
imported 10-36
importing from external modules 7-61
importing from external source 7-60
inheriting size 7-73
input from other blocks 7-46
logging values to MATLAB workspace 15-35
monitor values with command line

debugger 15-27
monitoring with floating scope 15-40
operations in action language 8-12
properties of 7-31
range violations 15-20
renaming 16-8
setting properties for in Explorer 16-8
sharing between Stateflow machines and

external modules 7-60
sizing 7-72
sizing by expression 7-72
temporary data 7-75
types supported by Stateflow 7-66
typing 7-63
viewing 4-38
See also fixed-point data

data and events 10-4
data dictionary

adding data 7-1
adding data in Stateflow 7-27
adding events 7-4
defined 1-6

data input from Simulink port order 16-10

Index-4

Index

data output to Simulink port order 16-10
data range violations (debugging) 15-20
data store, global

for sharing global data between Stateflow
and Simulink 7-53

Data type mode property
data 7-37

Data type property
data 7-37

data types
boolean 7-67
double 7-67
inheritance 7-67
int16 7-67
int32 7-67
int8 7-67
ml 7-67
single 7-67
uint16 7-67
uint32 7-67
uint8 7-67

data typing
with other data 7-68

data values during simulation 15-26 15-32
debugger

action control buttons 15-9
active states display 15-10
animation controls 15-8
Break button 15-9
breakpoints 15-4
breakpoints display 15-10
browse data display 15-10
call stack display 15-10
clear output display 15-10
Continue button 15-9
debugging run-time errors 15-11
display controls 15-10
main window 15-3
setting global breakpoints in Stateflow 15-4
Start button 15-7

status display area 15-7
Step button 15-9
Stop Simulation button 15-9
user interface 15-3

Debugger
monitoring data values during

simulation 15-26
Debugger breakpoint property

charts 10-11
Debugger breakpoints property, events 7-11
debugging

breakpoints in Embedded MATLAB
function 13-17

conflicting transitions 15-18
cyclic behavior 15-22
data range violations 15-20
display variable values in Embedded

MATLAB function 13-20
displaying Embedded MATLAB function

variables in MATLAB 13-20
Embedded MATLAB function 13-15
Embedded MATLAB functions 13-17
error checking options 15-6
model coverage 15-44
state inconsistency 15-16
stepping through Embedded MATLAB

function 13-19
truth table during simulation 12-48

Debugging
Mealy and Moore charts 5-25

decision coverage 15-46
chart as a triggered block 15-47
chart containing substates 15-47
conditional transitions 15-50
Embedded MATLAB functions 13-23 13-36
example 15-57
in model coverage reports 15-46
state with on event_name statement 15-50
superstates containing substates 15-48
truth tables 12-62

Index-5

Index

decision outcomes for truth tables 12-3
tracking action rows feature 12-39

decisions
assigning actions in truth table 12-37

decomposition
described 1-11
states and charts 2-8
substates 4-8

default decision outcome for truth tables
concept 12-3

default transitions 2-26
and exclusive (OR) decomposition 3-56
and history junctions 3-58
creating 4-21
defined 1-14
examples 2-27 3-56
labeled 3-59
labeling 2-27
to a junction 3-57

default, Stateflow data property values 7-43
Description property

data 7-42
events 7-12
functions 6-44 12-17
junctions 4-26 6-5
states 4-11
transitions 4-23

Description property for charts 10-11
Description property of machines 10-14
Destination property of transitions 4-23
diagram (Stateflow)

graphical components 1-10
objects 1-10

diagram editor
copying objects 4-37
cutting and pasting objects 4-37
differentiating syntax elements by color 4-33
drawing area 4-29
elements 4-27
menu bar 4-28

selecting and deselecting objects 4-36
specifying colors and fonts 4-30
status bar 4-29
title bar 4-28
toolbar 4-28
undoing and redoing operations 4-41
zooming 4-39

differentiating syntax elements in diagram
editor 4-33

directed event broadcasting
examples 3-96
send function

examples 8-48
semantics 3-96

using qualified event names 3-98
with qualified names 8-48

discrete update method 10-15
display controls in debugger 15-10
division (/) of fixed-point data 9-23
division operator (/) 8-12
Document Link property

charts 10-11
data 7-42
events 7-12
junctions 4-26 6-5
states 4-11
transitions 4-23

Document Link property for functions 6-44 12-17
Document Link property of machines 10-14
drawing area

in diagram editor 4-29
during action 2-9

example 2-12

E
E (binary point) in fixed-point data 9-5
early return logic for event broadcasts 3-39
Echo expressions without semicolons coder

option 14-12

Index-6

Index

Edit property of Search & Replace tool 16-22
editing

charts 4-27
labels in diagram editor 4-38
truth tables 12-24

Editor property for charts 10-11
either edge trigger 7-19
Embedded MATLAB functions

argument and return values 13-6
breakpoints in function 13-17
calling from Stateflow 13-7
calling MATLAB functions 13-13
calling other functions 13-4
checking for errors 13-15
condition coverage 13-23 13-36
creating 13-6
debugging 13-17
debugging function for 13-15
decision coverage 13-23 13-36
description 13-1
display variable value 13-20
displaying variable values in MATLAB 13-20
example 13-5
example model 13-5
function library 13-12
implicitly declared variables 13-12
introduction to 13-3
MCDC coverage 13-23 13-36
model coverage 13-22
model coverage example 13-23
model coverage report 13-28
Model Explorer 13-7
persistent variables 13-12
programming 13-11
signature 13-6
simulation example 13-17
stepping through function 13-19
subfunctions 13-13
types of model coverage 13-23

Enable C-bit operations property

for charts 10-9
operations affected 8-16

Enable C-like bit operations property of
machines 10-14

Enable debugging/animation coder option 14-11
Enable overflow detection (with debugging) coder

option 14-11
entry action 2-9

example 2-12 8-4
error

redefinition or redeclaration 14-29
error checking

charts 14-37
in Embedded MATLAB functions 13-15
overspecified truth tables 12-55
underspecified truth tables 12-56
when it occurs for truth tables 12-45

error messages
code generation 14-45
compilation 14-46
overview 14-44
parsing 14-44
target building 14-46

errors
data range 15-6
debugging run-time errors 15-11
detect cycles 15-6
state inconsistency 15-6
transition conflict 15-6

event actions
in a superstate 3-82

event broadcasting 3-96
early return logic 3-39
examples

state action notation 8-46
transition action notation 8-47

in condition actions 3-91
in parallel state action 3-84
nested in transition actions 3-87
See also directed event broadcasting

Index-7

Index

event input from Simulink
port order 16-10
trigger 7-14

event notation for temporal logic operators 8-58
event output to Simulink port order 16-10
event triggers

defining 10-26
function call example 10-24
function call output event 10-22
function call semantics 10-25

event triggers, setting 7-18
event triggers, using control signals 7-19
events 7-13 to 7-14 7-24 8-48

adding (creating) 7-4
and transitions from substate to

substate 3-48
broadcast in condition actions 3-54
broadcasting 8-46
causing transitions 3-45
copying/moving in Explorer 16-9
defined 1-15
defining edge-triggered output events 10-26
deleting 16-11
executing 3-3
exported 10-31
exporting events example 10-31
exporting to external code 7-21
function call output event to Simulink 10-22
how Stateflow processes them 3-4
imported 10-33
imported event example 10-33
importing from external code 7-22
processing with inner transition to

junction 3-65
processing with inner transitions in exclusive

(OR) states 3-62
properties 7-8
renaming 16-8
setting properties for in Explorer 16-8
sources for 3-3

triggering Simulink blocks with 7-14
viewing 4-38
See also directed event broadcasting; implicit
events; input events; output events

events, accessing Simulink subsystems from
Stateflow events 7-16

every
operator 8-56

examples
change detection in Stateflow 8-71

exclusive (OR) decomposition 2-8
and default transitions 3-56

exclusive (OR) states
defined 1-11
transitions 2-18
transitions to and from 3-44

exclusive (OR) substates
transitions 2-20

exclusive (OR) superstates
transitions 2-19

Execute (enter) Chart at Initialization property
for charts 10-10

executing, Stateflow charts at initialization 3-7
execution order

of parallel (AND) states 3-27
exit action 2-9

example 2-12 8-4
exp in action language 8-23
explicit ordering

of parallel (AND) states 3-29
Explore property of Search & Replace tool 16-22
Explorer

object hierarchy list 16-4
opening 16-3
operations 16-2
overview 16-2
targets 16-6
user interface 16-2

Export Chart Level Graphical Functions property
for charts 10-9

Index-8

Index

exporting data to external code 10-35
example 10-36

exporting data to external modules
description 7-60

exporting events to external code 10-31
example 10-32

exporting graphical functions 6-41
expressions, using to set data properties in

Stateflow 7-42
external code sources

defining interface for 10-31
definition 10-31

F
F (fractional slope) in fixed-point data 9-5
fabs in action language 8-23
falling edge trigger 7-19
Field types field of Search & Replace tool 16-14
final action in truth tables 12-42
Finder

dialog box 16-28
user interface 16-27

finite state machine
described 1-3
introduction 1-3
references 1-5
representations 1-3

First Index (of array) property, data 7-41
fixed-point data 9-1 9-17

arithmetic 9-2
bias B 9-2
context-sensitive constants 9-8
defined 9-2
example of using 9-13
how to use 9-9
implementation in Stateflow 9-5
offline conversions 9-30
online conversions 9-30
operation (+, -, *, /) equations 9-3

operations supported 9-17
overflow detection 9-11
properties in Stateflow 7-37
quantized integer, Q 9-2
Scaling property 9-7
setting for Strong Data Typing with Simulink

IO 10-10
sharing with Simulink 9-12
slope S 9-2
specifying in Stateflow 9-7
Stored Integer property 9-7
Type property 9-7

fixed-point operations 9-17
assignment 9-25
casting 9-25
logical (&, &&, |, ||) 9-24
promotions 9-19
special assignment

and context-sensitive constants 9-29
division example 9-28
multiplication example 9-26

floating scope
select signals 15-41

floating scope monitor of data and states 15-40
floating-point numbers

precision in action language 8-21
floor in action language 8-23
flow diagrams

connective junctions in 2-31
cyclic behavior example 15-23
example 2-35
examples 2-31
for loops 2-34
with connective junctions 3-75

flow graphs
order of execution 3-9
types 3-8

fmod in action language 8-23
font size of labels 4-38
fonts in diagram editor 4-30

Index-9

Index

for loops
example 2-34
with condition actions 3-53
with connective junctions 3-74

Forward To button in diagram editor 6-10
function call events

example output event semantics 10-25
output event 10-22
output event example 10-24

function call subsystem
binding trigger event 8-74
mixing bound and muxed events 8-87
sampling times with bind action 8-79

Function-call subsystems, for triggering an event
in a Stateflow chart 7-19

functions 2-41
calling functions from Embedded MATLAB

functions 13-4
data and event arguments 8-42
Description property 6-44 12-17
Document Link property 6-44 12-17
Embedded MATLAB function example 13-5
Embedded MATLAB run-time library 13-12
Function Inline Option property 6-44 12-17
inlining 6-44 12-17
Label property 6-44 12-17
MATLAB 8-29
Name property 6-43 12-16
setting breakpoints 6-43 12-16
truth table function 12-8
See also graphical functions

G
generated code files 14-47
global breakpoints

setting in Stateflow debugger 15-4
global data store

for sharing data between Stateflow and
Simulink 7-53

graphical functions 2-41
calling from action language 6-41
compared with truth tables 12-17
creating 6-29
example 2-41
exporting 6-41
properties 6-42
realizing truth tables 12-63
signature (label) 6-29

graphical objects 2-3
copying 4-37
cutting and pasting 4-37

grouping
boxes 6-45
states 4-8

H
hexadecimal notation in action language 8-20
hierarchy

described 1-21
of objects 2-6
of states 2-6
state example 2-7
transition example 2-14

history junctions 2-38
and default transitions 3-58
and inner transitions 2-39
creating 4-24 6-3
defined 1-16
definition 2-38
example of use 2-38
inner transitions to 2-24 3-68

I
if-then-else decision

examples 2-32 to 2-33
with connective junctions 3-71

implicit events

Index-10

Index

definition 7-24
example 7-24
referencing in action language 7-24

implicit ordering
of parallel (AND) states 3-28

importing data from external code 10-36
example 10-37

importing data from external modules 7-61
importing data from external source 7-60
importing events from external code 10-33

example 10-34
in

operator 8-57
in action language 8-21
in function in conditions 8-8
inactive chart execution 3-6
inactive states 2-6
infinity symbol inf in action language 8-21
inherited update method 10-15
inherited update method for Stateflow

block 10-15
inheriting data size 7-73

CompiledSize property 7-73
inheriting data type 7-67
initial action in truth tables 12-42
Initial Outputs Every Time Chart Wakes Up

property for charts 10-11
Initial value property, data 7-39
inlining functions

Function Inline Option property 6-44 12-17
inner transitions

after using them 2-23
before using them 2-22
definition 2-22
examples 2-22 3-62
processing events in exclusive (OR)

states 3-62
to a history junction 3-68
to a junction, processing events with 3-65
to history junction 2-24

input data from other blocks 7-46
input events

associating with control signals 7-14
defining 7-13

input events, setting triggers 7-18
input events, using edge triggers 7-19
integer word size

setting for target 9-21
interfaces 10-4

to external code 10-3 10-31
to MATLAB data 10-3
typical tasks to define 10-4
update methods for Stateflow block 10-15

interfaces to MATLAB
data 10-30
workspace 10-30

interfaces to Simulink
continuous Stateflow block 10-20
defining 1-8
edge-triggered output event 10-26
function call output event 10-22
implementing 10-17
inherited Stateflow block 10-19
sampled Stateflow block 10-18
triggered Stateflow block 10-17

J
junctions 2-31 2-38

properties 4-25 6-4
size 4-25 6-4
See also connective junctions; history
junctions

K
keyboard shortcuts

in diagram editor 4-44
moving in a zoomed diagram 4-40
opening subcharts 6-9

Index-11

Index

zooming 4-40
keywords

change(data_name) 7-24
during 8-5
entry 8-4
entry(state_name) 7-24
exit 8-4
exit(state_name) 7-25
in(state_name) 8-8
ml. 8-29
ml() 8-30
on event_name action 8-6
send 8-48
summary list 8-12
tick 7-25
wakeup 7-25

L
Label property

functions 6-44 12-17
states 4-11
transitions 4-23

labels
default transitions 2-27 3-59
editing in diagram editor 4-38
field 16-19
font size 4-38
format for transition segments 3-70
format for transitions 3-44 4-17
graphical function signature 6-29
state example 2-11
states 2-9 4-11
transition 2-15
transitions 4-17

labs in action language 8-23
ldexp in action language 8-23
left bit shift (<<) operator 8-13
Limit Range property, data 7-40

line continuation symbol ... in action
language 8-21

literal code symbol $ in action language 8-21
local breakpoints

setting breakpoints on specific Stateflow
objects 15-5

log in action language 8-23
log10 in action language 8-23
logging data

displaying values 15-37
logging data values to MATLAB workspace 15-35
logging state activity

displaying state activity 15-37
logging state activity to MATLAB

workspace 15-35
logical AND operator (&) 8-14

M
M code

Embedded MATLAB function example 13-11
machine

adding targets to 14-8
overview of Stateflow machine 1-21
setting properties 10-12

make files 14-49
Match case

field of Search & Replace tool 16-14
search option of Search & Replace tool 16-15

Match options field of Search & Replace
tool 16-14

Match whole word option in Search & Replace
tool 16-16

MATLAB 10-3 10-30
functions and data in Stateflow 8-29
in Embedded MATLAB functions 13-13
ml. namespace operator 8-29
ml() and full MATLAB notation 8-33
ml() function call 8-30

Index-12

Index

See also interfaces to MATLAB; interfaces to
MATLAB workspace

MATLAB display symbol ; 8-21
max in action language 8-24
MCDC coverage

definition 15-51
Embedded MATLAB functions 13-23 13-36
example 15-57
explanation 15-59
irrelevant conditions 15-60
specifying 15-45
truth tables 12-62

Mealy charts
building in Stateflow 5-1
design considerations 5-8
how to create 5-5
vending machine example 5-11

menu bar
in diagram editor 4-28

menus
customizing for Stateflow Editor 4-47

messages
error messages 14-44
of Search & Replace tool 16-25

.mex* files 14-47
min in action language 8-24
Minimize array reads using temporary variables

coder option 14-20
ml data type 8-34

and targets 8-34
inferring size 8-34
place holder for workspace data 8-36
scope 8-34

ml. namespace operator 8-29
expressions 8-32
inferring return size 8-37
or ml() function, which to use? 8-33

ml() function 8-30
and full MATLAB notation 8-33

dynamically construct workspace
variables 8-33

expressions 8-32
inferring return size 8-37
or ml. namespace operator, which to

use? 8-33
model coverage 15-44

chart as subsystem report section 15-53
colored stateflow diagram example 15-61
colored stateflow diagrams 15-61
condition coverage 15-51
coverages for truth table function 12-58
cyclomatic complexity 15-46
decision coverage 15-46
definition 15-44
for Embedded MATLAB functions 13-22
for Stateflow charts 15-51
for truth tables 12-58
generate HTML report 15-45
MCDC coverage 15-51
report 15-45
report for truth table example 12-58
reporting on 15-45
specifying reports 15-45
truth tables 12-58

model coverage report
chart as superstate section 15-54
state sections 15-55
Summary 15-52
transition section 15-57

Model Explorer
adding data 16-6
adding events 16-6
Embedded MATLAB functions 13-7
object icons 16-5

Modified property of machines 10-13
modulus operator (%%) 8-13
monitoring data values

in the Debugger 15-26

Index-13

Index

monitoring data values during simulation 15-26
15-32

monitoring data values with command line
debugger 15-27

monitoring data values with floating scope 15-40
monitoring state activity with floating

scope 15-40
Moore charts

building in Stateflow 5-1
design considerations 5-14
how to create 5-5
traffic light example 5-20

multiplication (*) of fixed-point data 9-23
multiplication operator (*) 8-12

N
Name property

charts 10-8
data 7-33
events 7-10
functions 6-43 12-16
states 2-10 4-10

nongraphical objects (data, events, targets) 2-4
nonsmart transitions

asymmetric distortion 6-27
graphical behavior 6-26

notation
defined 1-4
introduction to Stateflow notation 2-1
representing hierarchy 2-6

notes (chart)
changing color 6-49
changing font 6-49
creating 6-48
deleting 6-50
editing existing notes 6-48
moving 6-50
TeX format 6-49

O
object palette

in Stateflow diagram editor 4-28
Object types field of Search & Replace tool 16-14
objects 2-3 to 2-4

hierarchy 2-6
overview of Stateflow objects 2-3
See also graphical objects; nongraphical
objects

offline conversions with fixed-point data 9-30
on event_name action 2-9

example 2-12 8-6
online conversions with and fixed-point data 9-30
operations

assignment 8-16
binary 8-12
bit 8-12
defined for fixed-point data 9-3
enable C-bit operations 10-9
exceptions to undo 4-41
fixed-point data 9-17
in action language 8-12
pointer and address 8-17
type cast 8-17
unary 8-15
undo and redo 4-41
with objects in Explorer 16-2

operators
addition (+) 8-13
after 8-52
at 8-55
before 8-54
bitwise AND (&) 8-14
bitwise OR (|) 8-15
bitwise XOR (^) 8-14
comparison (>, <, >=, <=, ==, -=, !=, <>) 8-13
division (/) 8-12
every 8-56
explicit type cast cast operator 8-18
explicit typing with cast 8-18

Index-14

Index

in 8-57
left bit shift (<<) 8-13
logical AND (&) 8-14
logical AND (&&) 8-15
logical OR (|) 8-15
logical OR (||) 8-15
MATLAB type cast 8-18
modulus (%%) 8-13
multiplication (*) 8-12
pointer and address 8-17
power (^) 8-14
right bit shift (>>) 8-13
subtraction (-) 8-13
type 8-19

ordering
of parallel (AND) states 3-27

output events
associating with output port 7-15
defining 7-14

Output State Activity property of states 4-10
overflow detection

fixed-point data 9-11
overspecified truth tables 12-55

P
parallel (AND) states

activation order 4-9
assigning priorities to restored states 3-35
decomposition 2-8
defined 1-11
entry execution 3-21
event broadcast action 3-84
examples of 3-84
explicit ordering 3-29
implicit ordering 3-28
maintaining order of 3-31
order of execution 3-21 3-27
ordering in boxes and subcharts 3-37

switching between implicit and explicit
ordering 3-37

parameter expressions, using to set data
properties in Stateflow 7-42

Parent property
data 7-34
events 7-10
junctions 4-26 6-5
transitions 4-23

parsing diagrams
error messages 14-44
example 14-37
overview 14-36
starting the parser 14-36
tasks 14-37

passing arguments by reference
C functions

passing arguments by reference 8-27
pasting objects in the diagram editor 4-37
path names for custom code 14-30
pointer and address operations 8-17
Port property

data 7-35
events 7-11

ports
order of inputs and outputs 16-10

Ports and Data Manager C-5
pow in action language 8-23
Preserve case

field of Search & Replace tool 16-14
search type in Search & Replace tool 16-17

Preserve symbol names coder option 14-20
printing

book report of elements 6-56
charts 6-51
current diagram 6-56
details of chart 6-53
diagram 6-51

programming
Embedded MATLAB functions 13-11

Index-15

Index

promotion rules for fixed-point operations 9-19
properties

machine 10-12
of transitions 4-22
of truth tables 12-47
Search & Replace tool 16-22
states 4-9

Properties property of Search & Replace
tool 16-22

Q
quantized integer (Q) in fixed-point data 9-2

R
rand in action language 8-23
range violations, data 15-20
Recognize if-elseif-else in nested if-else

statements coder option 14-18
redo operation 4-41
references 1-5
regular expressions

Search & Replace tool 16-16
Stateflow Finder 16-29
tokens in Search & Replace tool 16-17

relational operations
fixed-point data 9-23

renaming targets 16-8
Replace button of Search & Replace tool 16-15
replace buttons in Search & Replace tool 16-24
Replace constant expressions by a single constant

coder option 14-19
Replace with field of Search & Replace tool 16-14
replacing text in Search & Replace tool 16-22

with case preservation 16-23
with tokens 16-23

reports
book report of elements 6-56
charts 6-51

details of chart 6-53
model coverage 15-45
model coverage for Embedded MATLAB

functions 13-28
model coverage for Stateflow charts 15-51

reserved names in custom code 14-29
resolving symbols in action language 14-42
return size of ml expressions 8-37
right bit shift (>>) operator 8-13
rising edge trigger 7-19
rtw target

configuring 14-13
starting the build 14-35

run-time errors
debugging 15-11

S
Sample Time property for charts 10-8
sampled update method for Stateflow block 10-15
Save final value to base workspace property,

data 7-40
Scaling property of fixed-point data 9-7
Scope property

data 7-34
events 7-10

Search & Replace tool 16-12
containing object 16-20
Contains word option 16-15
Custom Code field 16-19
Description field 16-19
Document Links field 16-19
Field types field 16-14
icon of found object 16-20
Match case field 16-14
Match case option 16-15
Match options field 16-14
Match whole word option 16-16
messages 16-25
Name field 16-19

Index-16

Index

object types 16-14
Object types field 16-14
opening 16-12
portal area 16-21
Preserve case field 16-14
Preserve case option 16-17
Regular expression option in Search &

Replace tool 16-16
regular expression tokens 16-17
Replace All button 16-24
Replace All in This Object button 16-25
Replace button 16-15 16-24
Replace with field 16-14
replacement text 16-22
Search button 16-15 16-19
Search For field 16-13
Search in field 16-14
search order 16-21
search scope 16-17
search types 16-15
view area 16-19
View Area field 16-15
viewer 16-21
viewing a match 16-20

Search button of Search & Replace tool 16-15
Search for field of Search & Replace tool 16-13
Search in field of Search & Replace tool 16-14
search order in Search & Replace tool 16-21
search scope in Search & Replace tool 16-17
searching

chart 16-17
Finder user interface 16-27
machine 16-17
specific objects 16-18
text 16-12
text matches 16-18

selecting and deselecting objects in the diagram
editor 4-36

self-loop transitions 2-21
creating 4-20

delay 2-35
with connective junctions 3-73
with junctions 2-33

semantics
defined 1-4
early return logic for event broadcasts 3-39
examples 3-42
executing a chart 3-6
executing a state 3-21
executing a transition 3-8
executing an event 3-3

send function
and directed event broadcasting 8-48
directed event broadcasting 3-96
directed event broadcasting examples 8-48

sfnew function 4-2
sharing data

between Stateflow machines and external
modules 7-60

shortcut keys
in diagram editor 4-44
moving in a zoomed diagram 4-40
opening subcharts 6-9
zooming 4-40

shortcut menus
in Stateflow diagram editor 4-29
to properties 4-29

Show Portal property of Search & Replace
tool 16-22

Signal Logging dialog 15-35
signal selection in floating scope 15-41
signature

graphical functions 6-29
simulating truth tables 12-48
simulation

Embedded MATLAB function 13-17
monitoring data values 15-26 15-32
monitoring data values in the

Debugger 15-26
simulation target

Index-17

Index

code generation options 14-11
configuring 14-10
starting the build 14-34

Simulink 10-3
See also interfaces to Simulink

Simulink model and Stateflow machine
relationship between 1-6

Simulink Model property of machines 10-13
Simulink Subsystem property for charts 10-8
sin in action language 8-23
single-precision floating-point symbol F 8-21
sinh in action language 8-23
Sizes (of array) property of data 7-36
sizing data 7-72

by expression 7-72
by inheritance 7-73
CompiledSize property 7-73

slits (in supertransitions) 6-12
slope (S) in fixed-point data 9-2
smart transitions

bowing symmetrically 6-25
graphical behavior 6-20

Source property of transitions
transitions

Source property 4-23
sqrt in action language 8-23
Start button on debugger 15-7
starting the build 14-34
state inconsistency

debugging 15-16
definition 15-16
detecting 15-16
example 15-16

State Machine Type property for charts 10-8
Stateflow

building Mealy and Moore charts 5-1
change detection 8-60
defining structures 11-7
example of structures 11-3
interfacing structures with buses 11-8

local structures 11-12
representations 1-4
setting global breakpoints in debugger 15-4
setting local breakpoints on specific

objects 15-5
Signal Logging dialog 15-35
specify properties of truth table

functions 12-15
structure elements 11-2
structures 11-2
temporary structures 11-14
uses of structures 11-2
working with virtual and nonvirtual

buses 11-12
Stateflow blocks

considerations in choosing continuous
update 10-20

continuous 10-20
continuous example 10-21
inherited 10-19
inherited example 10-19
sampled 10-18
sampled example 10-19
triggered 10-17
triggered example 10-18
update methods 10-15

Stateflow diagram editor
object palette 4-28
shortcut menus 4-29
zoom control 4-29

stateflow function 4-2
states 2-8

actions 4-11
active and inactive 2-6
active state execution 3-23
button (drawing) 2-6
corners 4-16
creating 4-5 6-45
debugger breakpoint property 4-11
decomposition 2-6 2-8

Index-18

Index

definition 2-6
displaying logged state activity 15-37
during action 2-12
editing 16-5
entry action 2-12 8-4
entry execution 3-21
exclusive (OR) decomposition 2-8
execution example 3-24
exit action 2-12 8-4
exiting active states 3-23
grouping 4-8
hierarchy 2-6 to 2-7
how they are executed 3-21
label 2-9 4-11
label example 2-11
label notation 2-6
label property 4-11
logging activity to MATLAB workspace 15-35
monitoring activity with floating scope 15-40
moving and resizing 4-7
Name property 2-10
Name, entering 4-12
on event_name action 2-12 8-6
output activity to Simulink 4-14
parallel (AND) decomposition notation 2-8
properties 4-9
setting properties for in Explorer 16-8
See also parallel states

status bar
in diagram editor 4-29

Step button on debugger 15-9
Stop Simulation button on debugger 15-9
String Data Typing with Simulink I/O, and

Stateflow input and output data 7-70
Strong Data Typing with Simulink IO setting

fixed-point data 10-10
structures

about, in Stateflow 11-2
and bus signals in Stateflow 11-1
defining in Stateflow 11-7

elements of 11-2
example in Stateflow 11-3
interfacing with buses in Stateflow 11-8
local in Stateflow 11-12
temporary in Stateflow 11-14
uses in Stateflow 11-2
virtual and nonvirtual in Stateflow 11-12

subcharts
and supertransitions 6-6
creating 6-6 to 6-7
definition and description 6-6
editing contents 6-10
manipulating 6-8
navigating through hierarchy of 6-10
opening to edit contents 6-9
unsubcharting 6-7

subfunctions
in Embedded MATLAB functions 13-13

substates
creating 4-7
decomposition 4-8

subtraction (-) of fixed-point data 9-23
subtraction operator (-) 8-13
Summary of model coverage report 15-52
superstates

event actions in 3-82
supertransitions 6-12

definition and description 6-12
drawing into a subchart 6-13
drawing out of a subchart 6-16
labeling 6-17
slits 6-12

Symbol Autocreation Wizard 14-42
symbols

comment symbols %,//,/* in action
language 8-20

hexadecimal notation in action
language 8-20

infinity symbol inf in action language 8-21

Index-19

Index

line continuation symbol ... in action
language 8-21

literal code symbol $ in action language 8-21
MATLAB display symbol ; 8-21
single-precision floating-point symbol F in

action language 8-21
time symbol t in action language 8-21

symbols in action language 8-20

T
tan in action language 8-23
tanh in action language 8-23
targets 14-11 14-24

adding to machine 14-8
build options for custom targets 14-24
building 14-5
building custom code into 14-27
building error messages 14-46
building procedure 14-7
building with custom code 14-6
configuration custom target 14-22
configuration rtw target 14-13
configuration simulation target 14-10
copying/moving in Explorer 16-9
custom code 14-5
deleting 16-11
in Explorer 16-6
overview 14-3
renaming 16-8
setting integer word size for 9-21
setting properties for in Explorer 16-8
types of 14-3
See also custom targets; simulation targets

temporal logic events 8-58
temporal logic operators 8-51

after 8-52
at 8-55
before 8-54
event notation 8-58

every 8-56
in 8-57
rules for using 8-51

temporary data 7-75
Test point property

states 4-10
Test point property, data 7-41
text

replacing 16-12
searching 16-12

tick keyword 7-25
time symbol t in action language 8-21
title bar

in diagram editor 4-28
toolbar

in diagram editor 4-28
transition actions

and condition actions 3-51
event broadcasts nested in 3-87
notation 2-15

transition labels
condition 4-17
condition action 4-17
event 4-17
transition action 4-17

transition segments
backtracking to source 3-80
label format 3-70

transitions 2-22 2-26 4-20 6-19 6-26
and exclusive (OR) states 2-18 3-44
and exclusive (OR) substates 2-20
and exclusive (OR) superstates 2-19
arrowhead size 4-20
based on events 3-45
bowing 4-19
breakpoints 4-23
changing arrowhead size 4-20
condition 4-17
condition action 2-15 4-17
connection examples 2-18

Index-20

Index

creating 4-15
dashed 4-19
debugging conflicting 15-18
defined 1-13
deleting 4-15
Description property 4-23
Destination property 4-23
Document Link property 4-23
events 4-17
flow graph types 3-8
from common source with connective

junctions 3-77
from connective junctions based on common

event 3-79
from multiple sources with connective

junctions 3-78
hierarchy 2-14
label format 4-17
Label property 4-23
labels

action semantics 3-44
format 4-17
overview 2-15 4-17

moving 4-18
moving attach points 4-19
moving label 4-19
nonsmart

anchored connection points 6-26
notation 2-18
ordering by angular surface position 3-12
ordering by hierarchy 3-11
ordering by label 3-12
overview 2-13
Parent property 4-23
properties 4-22
self-loop transitions 4-20
setting them smart 6-19

smart
connecting to junctions at 90 degree

angles 6-22
sliding and maintaining shape 6-21
sliding around surfaces 6-20
snapping to an invisible grid 6-24

straight transitions 4-16
substate to substate with events 3-48
transition action 2-15 4-17
transition testing order 3-11
valid 2-16
valid labels 4-18
when they are executed 3-8
See also default transitions; inner transitions;
nonsmart transitions; self-loop transitions;
smart transitions

trigger
event input from Simulink 7-14

Trigger property
events 7-11

triggered update method for Stateflow
block 10-15

triggers, setting 7-18
triggers, using control signals 7-19
Truth Table block

Ports and Data Manager C-5
Truth Table Editor C-3

Truth Table Editor C-3
truth tables

assigning actions to decisions 12-37
calling rules 12-17
compared with graphical functions 12-17
default decision 12-3
defined 12-8
editing 12-24
entering final actions 12-42
entering initial actions 12-42
how they are realized 12-63
how to interpret 12-3
model coverage 12-58

Index-21

Index

model coverage example report 12-58
model coverage for 12-58
overspecified 12-55
properties dialog 12-47
pseudocode example 12-3
row and column tooltips 12-77
simulation 12-48
specify properties in Stateflow 12-15
underspecified 12-56

type cast operations 8-17
type cast operators

explicit cast operator 8-18
MATLAB form 8-18

type operator 8-19
using to type other data

typing data with type operator 7-68
Type property

fixed-point data 9-7
types

inheriting 7-67
types of data

supported by Stateflow 7-66
typing data 7-63

with other data 7-68

U
unary actions 8-15
unary operations 8-15

fixed-point data 9-18
underspecified truth tables 12-56
undo operation 4-41

exceptions 4-41
Units property, data 7-41
Up To button in diagram editor 6-10
update method

continuous 10-16
discrete (sample time) 10-15
inherited 10-15

Update method property for charts 10-8
update methods for Stateflow block 10-15
Use chart names with no mangling coder

option 14-20
Use Strong Data Typing with Simulink I/O

property for charts 10-10
user-written code

and Stateflow arrays 8-45
C functions 8-25 8-27

V
valid transitions 2-16
Version property of machines 10-14
View Area field of Search & Replace tool 16-15
view area of Search & Replace tool 16-19

W
wakeup keyword 7-25
Watch in debugger property, data 7-41
workspace

examining the MATLAB workspace 10-30
wormhole 6-15

Z
zoom control

in Stateflow diagram editor 4-29
zooming a diagram

overview 4-39
shortcut keys 4-40
using zoom factor selector 4-39

Index-22

	toc
	Stateflow Concepts
	Finite State Machine Concepts
	What Is a Finite State Machine?
	Finite State Machine Representations
	Stateflow Representations
	Notation
	Semantics
	References

	Stateflow and Simulink
	The Simulink Model and the Stateflow Machine
	Stateflow Data Dictionary of Objects
	Defining Stateflow Interfaces to Simulink

	Stateflow Diagram Objects
	States
	Transitions
	Default Transitions
	Events
	Data
	Conditions
	History Junction
	Actions
	Connective Junctions

	Stateflow Hierarchy of Objects
	Exploring a Real-World Stateflow Application
	Overview of the "fuel rate controller" Model
	Control Logic of the "fuel rate controller" Model
	Simulating the "fuel rate controller" Model
	Implicit Event Broadcasts
	Modifying the Model

	Stateflow Notation
	Overview of Stateflow Objects
	Graphical Objects
	Nongraphical Objects
	Event Objects
	Data Objects
	Target Objects

	The Stateflow Data Dictionary of Objects

	States
	What Is a State?
	State Hierarchy
	Representing State Hierarchy Example

	State Decomposition
	Exclusive (OR) State Decomposition
	Parallel (AND) State Decomposition

	State Labels
	State Name
	State Actions

	Transitions
	What Is a Transition?
	Transition Hierarchy
	Transition Label Notation
	Transition Label Example

	Valid Transitions

	Transition Connections
	Transitions to and from Exclusive (OR) States
	Transitions to and from Junctions
	Transitions to and from Exclusive (OR) Superstates
	Transitions to and from Substates
	Self-Loop Transitions
	Inner Transitions
	Before Using an Inner Transition
	After Using an Inner Transition to a Connective Junction
	Using an Inner Transition to a History Junction

	Default Transitions
	What Is a Default Transition?
	Drawing Default Transitions
	Labeling Default Transitions
	Default Transition Examples
	Default Transition to a State Example
	Default Transition to a Junction Example
	Default Transition with a Label Example

	Connective Junctions
	What Is a Connective Junction?
	Flow Diagram Notation with Connective Junctions
	Connective Junction with All Conditions Specified Example
	Connective Junction with One Unconditional Transition Example
	Connective Junction — Self-Loop Example
	Connective Junction and For Loops Example
	Flow Diagram Notation Example
	Connective Junction from a Common Source to Multiple Destination
	Connective Junction Common Events Example

	History Junctions
	What Is a History Junction?
	Use of History Junctions Example

	History Junctions and Inner Transitions

	Boxes
	Graphical Functions

	Stateflow Semantics
	Executing an Event
	Sources for Stateflow Events
	Processing Events

	Executing a Chart
	Executing an Inactive Chart
	Executing an Active Chart
	Executing a Chart at Initialization

	Executing a Transition
	Transition Flow Graph Types
	Executing a Set of Flow Graphs

	Transition Testing Order
	Implicit Order Mode
	Ordering by Hierarchy
	Ordering by Label
	Ordering by Geometric Position of Source

	Explicit Order Mode
	Switching to Explicit Order Mode
	Changing the Transition Order

	Entering, Executing, and Exiting a State
	Entering a State
	Executing an Active State
	Exiting an Active State
	State Execution Example
	Inactive Diagram Event Reaction
	Sleeping Diagram Event Reaction

	Execution Order for Parallel States
	Implicit Ordering of Parallel States
	Explicit Ordering of Parallel States
	Using Explicit Ordering for Parallel States
	How Explicit Ordering Works

	Maintaining Order of Parallel States
	Preserving Relative Priorities in Implicit Ordering Mode
	Preserving Relative Priorities in Explicit Ordering Mode

	How Stateflow Assigns Priorities to Restored States
	Switching Between Implicit and Explicit Ordering
	Ordering of Parallel States in Boxes and Subcharts

	Early Return Logic for Event Broadcasts
	Semantic Examples
	Directed Event Broadcasting

	Transitions to and from Exclusive (OR) States Examples
	Label Format for a State-to-State Transition Example
	Transitioning from State to State with Events Example
	Processing of a First Event
	Processing of a Second Event
	Processing of a Third Event

	Transitioning from a Substate to a Substate with Events Example

	Condition Action Examples
	Condition Action Example
	Condition and Transition Actions Example
	Condition Actions in For Loop Construct Example
	Condition Actions to Broadcast Events to Parallel (AND) States E
	Cyclic Behavior to Avoid with Condition Actions Example

	Default Transition Examples
	Default Transition in Exclusive (OR) Decomposition Example
	Default Transition to a Junction Example
	Default Transition and a History Junction Example
	Labeled Default Transitions Example

	Inner Transition Examples
	Processing Events with an Inner Transition in an Exclusive (OR)
	Processing One Event in an Exclusive (OR) State
	Processing a Second Event in an Exclusive (OR) State
	Processing a Third Event in an Exclusive (OR) State

	Processing Events with an Inner Transition to a Connective Junct
	Processing the First Event with an Inner Transition to a Connect
	Processing a Second Event with an Inner Transition to a Connecti

	Inner Transition to a History Junction Example

	Connective Junction Examples
	Label Format for Transition Segments Example
	If-Then-Else Decision Construct Example
	Self-Loop Transition Example
	For Loop Construct Example
	Flow Diagram Notation Example
	Transitions from a Common Source to Multiple Destinations Exampl
	Transitions from Multiple Sources to a Common Destination Exampl
	Transitions from a Source to a Destination Based on a Common Eve
	Backtracking Behavior in Flow Graphs Example

	Event Actions in a Superstate Example
	Parallel (AND) State Examples
	Event Broadcast State Action Example
	Event Broadcast Transition Action with a Nested Event Broadcast
	Start of Event E_one Processing
	Event E_two Preempts E_one
	Event E_two Processing Ends
	Event E_one Processing Resumes

	Event Broadcast Condition Action Example

	Directed Event Broadcasting Examples
	Directed Event Broadcast Using Send Example
	Directed Event Broadcasting Using Qualified Event Names Example

	Creating Stateflow Chart Diagrams
	Creating a Stateflow Chart
	Creating States in Stateflow Charts
	Creating a State
	Moving and Resizing States
	Creating Substates and Superstates
	Grouping States
	Specifying Substate Decomposition
	Specifying Activation Order for Parallel States
	Changing State Properties
	Labeling States
	Entering the Name
	Entering Actions

	Outputting State Activity to Simulink

	Creating Transitions in Stateflow Charts
	Creating a Transition
	Creating Straight Transitions
	Labeling Transitions
	Editing Transition Labels
	Transition Label Format

	Moving Transitions
	Bowing the Transition Line
	Moving Transition Attach Points
	Moving Transition Labels

	Changing Transition Arrowhead Size
	Creating Self-Loop Transitions
	Creating Default Transitions
	Changing Transition Properties

	Creating Flowcharts with Connective Junctions
	Creating a Connective Junction
	Changing Connective Junction Size
	Changing Junction Properties

	Using the Stateflow Editor
	Stateflow Diagram Editor Window
	Displaying the Context Menu for Objects
	Specifying Colors and Fonts
	Changing Fonts for an Individual Text Item
	Using the Colors & Fonts Dialog

	Differentiating Syntax Elements in the Stateflow Action Language
	Default Syntax Highlighting
	Editing Syntax Highlighting
	Enabling and Disabling Syntax Highlighting

	Selecting and Deselecting Objects
	Cutting and Pasting Objects
	Copying Objects
	Editing Object Labels
	Viewing Stateflow Objects in the Model Explorer
	Zooming a Diagram
	Using the Zoom Factor Selector
	Zooming with Shortcut Keys
	Moving in Zoomed Diagrams with Shortcut Keys

	Undoing and Redoing Editor Operations
	Exceptions for Undo

	Stateflow Chart Notes Dialog Box
	Keyboard Shortcuts for Stateflow Diagrams
	Customizing the Stateflow Editor
	Adding Items to Stateflow Editor Menus
	Disabling and Hiding Stateflow Editor Menu Items
	Displaying Menu Tags

	Building Mealy and Moore Charts in Stateflow
	Overview of Mealy and Moore Machines
	Creating Mealy and Moore Charts
	Design Considerations for Mealy Charts
	Mealy Semantics
	Design Rules for Mealy Charts
	Compute Outputs in Condition Actions Only
	Do Not Use State Actions or Transition Actions
	Restrict Use of Data
	Restrict Use of Events
	Initialize Outputs Every Time Chart Wakes Up
	Calculate Output and State Using One Time Base

	Example: Mealy Vending Machine
	Logic of the Mealy Vending Machine
	Design Rules in Mealy Vending Machine

	Design Considerations for Moore Charts
	Moore Semantics
	Design Rules for Moore Charts
	Compute Outputs in State Actions, Not on Transitions
	Restrict Data to Inputs, Outputs, and Constants
	Reference Input Only in Conditions
	Do Not Use Actions on Transitions
	Do Not Use Graphical Functions
	Restrict Use of Events
	Initialize Outputs Every Time Chart Wakes Up

	Example: Moore Traffic Light
	Logic of the Moore Traffic Light
	Design Rules in Moore Traffic Light

	Changing Chart Type
	Debugging Mealy and Moore Charts

	Extending Stateflow Chart Diagrams
	Using History Junctions to Extend Charts and States
	Creating a History Junction
	Changing History Junction Size
	Changing History Junction Properties

	Using Subcharts to Extend Charts
	What Is a Subchart?
	Creating a Subchart
	Manipulating Subcharts as Objects
	Opening a Subchart
	Editing a Subchart
	Navigating Subcharts

	Using Supertransitions to Extend Transitions
	What Is a Supertransition?
	Drawing a Supertransition Into a Subchart
	Drawing a Supertransition Out of a Subchart
	Labeling Supertransitions

	Extending Transitions with Smart Behavior
	Setting Smart Behavior in Transitions
	What Smart Transitions Do
	Smart Transitions Slide Around Surfaces
	Smart Transitions Slide and Maintain Shape
	Smart Transitions Connect States to Junctions at 90 Degree Angle
	Smart Transitions Snap to an Invisible Grid
	Smart Transitions Bow Symmetrically

	What Nonsmart Transitions Do
	Nonsmart Transitions Anchor Connection Points
	Nonsmart Transitions Distort Asymmetrically

	Using Functions to Extend Actions
	Creating a Graphical Function
	Programming Different Types of Functions
	Graphical Functions
	Truth Table Functions
	Embedded MATLAB Functions

	Defining Graphical Function Data
	Calling Graphical Functions in Stateflow
	Exporting Graphical Functions
	Specifying Graphical Function Properties

	Using Boxes to Extend Chart Diagrams
	Creating a State
	Changing a State to a Box
	Using Boxes in Stateflow

	Using Notes to Extend Chart Diagrams
	Creating Notes
	Editing Existing Notes
	Changing Note Font and Color
	TeX Instructions

	Moving Notes
	Deleting Notes

	Reporting Chart Diagrams
	Printing and Reporting on Stateflow Charts
	Generating a Model Report in Stateflow
	System Report Options
	Report Format

	Printing the Current Stateflow Diagram
	Printing a Stateflow Book

	Defining Events and Data
	Adding Events
	Visibility of Events
	How to Add Events
	Adding Events Using the Stateflow Editor
	Adding Events Using the Model Explorer

	Setting Event Properties in the Event Dialog
	Event Properties Dialog
	Accessing the Event Properties Dialog
	Property Fields
	Name
	Parent
	Scope
	Port
	Trigger
	Debugger Breakpoints
	Description
	Document Link

	Sharing Events with Simulink
	Defining Input Events
	Associating Input Events with Control Signals
	Defining Output Events
	Associating an Output Event with an Output Port
	Accessing Simulink Subsystems from Stateflow Events
	Setting Event Triggers
	Using Control Signal Triggers
	Using Function Call Triggers

	Sharing Events with Stateflow External Code
	Exporting Events to Stateflow External Code
	Importing Events from Stateflow External Code

	Defining Implicit Events
	Referencing Implicit Events
	Example of an Implicit Event

	Adding Data
	Adding Data Using the Stateflow Editor
	Adding Data Using the Model Explorer

	Setting Data Properties in the Data Dialog
	The Data Properties Dialog
	Opening the Data Properties Dialog
	Data Properties Dialog Panes

	Setting General Properties
	Name
	Parent
	Scope
	Port
	Size
	Data Type Mode and Data Type
	Fixed-Point Data Properties

	Setting Value Attributes Properties
	Initial value
	Save final value to base workspace
	Limit range properties
	First index
	Units
	Test point
	Watch in debugger

	Setting Description Properties
	Description
	Document link

	Entering Expressions and Parameters for Data Properties
	Default Data Property Values
	Using Parameters in Expressions
	Using Constants in Expressions
	Using Arithmetic Operators in Expressions
	Calling Functions in Expressions

	Sharing Stateflow Data with Simulink and MATLAB
	Sharing Input and Output Data with Simulink
	Resolving Signal Objects for Output Data
	Eliminating Warnings for Implicit Signal Resolution for the Mode
	Disabling Implicit Signal Resolution for a Stateflow Chart
	Enabling Explicit Signal Resolution for an Individual Output Dat

	Bringing Simulink Parameters into Stateflow
	Initializing Data from the MATLAB Base Workspace
	Time of Initialization

	Saving Data to the MATLAB Workspace

	Sharing Global Data with Simulink
	Stateflow Works with Local and Global Data Stores
	Accessing Data Store Memory from a Stateflow Chart
	Binding a Stateflow Data Object to Data Store Memory
	Resolving Data Store Bindings
	Reading and Writing Global Data Programmatically

	Diagnostics for Sharing Data Between Stateflow and Simulink
	When to Enable Diagnostics
	How to Set Diagnostics for Shared Data

	Best Practices for Using Data Stores in Stateflow
	When Binding to Data Stores in Stateflow
	When Enforcing Writes Before Reads in Unconnected Blocks

	Sharing Data Between Charts and with External Modules
	Sharing Data Between Charts in a Stateflow Machine
	Sharing Local Data and Events Between All Charts in a Stateflow
	Sharing Data Store Memory Between Charts in a Stateflow Machine

	Sharing Stateflow Data with External Modules
	Exporting Data to External Modules
	Importing Data from External Modules

	Typing Stateflow Data
	Specifying Modes and Types
	Built-In Data Types
	Inheriting Data Types from Simulink
	Deriving Data Types from Previously Defined Data
	Typing Data by Using an Alias
	Strong Data Typing with Simulink I/O

	Sizing Stateflow Data
	Sizing Data by Expression
	Inheriting Input and Output Data Size from Simulink

	Defining Temporary Data
	Guidelines for Inheriting Data and Event Properties
	Inheriting Output Data Properties
	Inheriting Properties in Libraries

	Transferring Events and Data Across Models

	Using Actions in Stateflow
	Defining Action Types
	State Action Types
	Entry Actions
	Exit Actions
	During Actions
	Bind Actions
	On Event_Name Actions

	Transition Action Types
	Event Triggers
	Conditions
	Condition Actions
	Transition Actions

	Example of Action Type Execution

	Using Operations in Actions
	Binary and Bitwise Operations
	Unary Operations
	Unary Actions
	Assignment Operations
	Pointer and Address Operations
	Type Cast Operations
	MATLAB Form Type Cast Operators
	Explicit Type Cast Operator
	type Operator

	Using Special Symbols in Actions
	Comment Symbols
	Hexadecimal Notation Symbols
	Infinity Symbol, inf
	Line Continuation Symbol, ...
	Literal Code Symbol, $
	MATLAB Display Symbol, ;
	Single-Precision Floating-Point Number Symbol, F
	Time Symbol, t

	Calling C Functions in Actions
	Calling C Library Functions
	Calling the abs Function
	Calling min and max Functions
	Calling User-Written C Code Functions
	Function Call Transition Action Example
	Function Call State Action Example
	Passing Arguments by Reference

	Using MATLAB Functions and Data in Actions
	ml Namespace Operator
	ml Function
	ml Expressions
	Which ml Should I Use?
	ml Data Type
	Place Holder for Workspace Data

	Inferring Return Size for ml Expressions

	Using Data and Event Arguments in Actions
	Using Arrays in Actions
	Array Notation
	Arrays and Custom Code

	Broadcasting Events in Actions
	Event Broadcasting
	Event Broadcast State Action Example
	Event Broadcast Transition Action Example

	Directed Event Broadcasting
	Directed Event Broadcasting Using send
	Directed Event Broadcasting Using Qualified Event Names

	Using Temporal Logic in Actions
	Rules for Using Temporal Logic Operators
	after Temporal Logic Operator
	Syntax
	Description
	Example

	before Temporal Logic Operator
	Syntax
	Description
	Example

	at Temporal Logic Operator
	Syntax
	Description
	Example

	every Temporal Logic Operator
	Syntax
	Description
	Example

	in Temporal Logic Operator
	Syntax
	Description
	Example

	Conditional and Event Notation
	Temporal Logic Events

	Using Change Detection in Actions
	About Change Detection
	Running a Model That Demonstrates Change Detection
	How Change Detection Works
	Where Change Detection Occurs in the Chart Life Cycle
	Handling Transient Changes in Local Variables
	Handling Changes When Multiple Input Events Occur

	Change Detection Operators
	hasChanged Operator
	hasChangedFrom Operator
	hasChangedTo Operator

	Change Detection Example

	Using Bind Actions to Control Function-Call Subsystems
	Binding a Function-Call Subsystem to a State
	Handling Outputs When the Subsystem is Disabled
	Controlling Behavior of States When the Subsystem is Enabled

	Example of How to Bind a Function-Call Subsystem to a State
	Simulating a Bound Function-Call Subsystem
	Using Stateflow Logic with Binding
	Avoiding Muxed Trigger Events with Binding

	Using Fixed-Point Data in Stateflow
	What Is Fixed-Point Data?
	Fixed-Point Numbers
	Fixed-Point Operations

	Using Fixed-Point Data in Stateflow
	How Stateflow Defines Fixed-Point Data
	Specifying Fixed-Point Data in Stateflow
	Fixed-Point Context-Sensitive Constants
	Tips for Using Fixed-Point Data in Stateflow
	Overflow Detection for Fixed-Point Types
	Sharing Fixed-Point Data with Simulink

	Fixed-Point "Bang-Bang Control" Example
	Opening the Fixed-Point "Bang-Bang Control" Example
	Exploring the Fixed-Point "Bang-Bang Control" Example
	temperature sensor Block
	ADC Block
	Gateway In Block

	Operations with Fixed-Point Data
	Supported Operations with Fixed-Point Operands
	Binary Operations
	Unary Operations and Actions
	Assignment Operations

	Promotion Rules for Fixed-Point Operations
	Default Selection of the Number of Bits of the Result Type
	Unary Promotions
	Binary Operation Promotion for Integer Operand with Fixed-Point
	Binary Operation Promotion for Double Operand with Fixed-Point O
	Binary Operation Promotion for Single Operand with Fixed-Point O
	Binary Operation Promotion for Two Fixed-Point Operands

	Assignment (=, :=) Operations
	Assignment Operator =
	Assignment Operator :=
	:= Multiplication Example
	:= Division Example
	:= Assignment and Context-Sensitive Constants

	Fixed-Point Conversion Operations
	Offline Conversions for Initialized Data
	Online Conversions for Casting Operations
	Offline and Online Conversion Examples

	Autoscaling of Stateflow Fixed-Point

	Defining Interfaces to Simulink and MATLAB
	Overview of Stateflow Interfaces
	Stateflow Interfaces
	Typical Tasks to Define Stateflow Interfaces
	Where to Find More Information on Events and Data

	Specifying Chart Properties
	Setting Properties for Individual Charts
	Setting Properties for All Charts in the Model

	Setting the Stateflow Block Update Method
	Implementing Simulink Update Interfaces
	Defining a Triggered Stateflow Block
	Triggered Stateflow Block Example

	Defining a Sampled Stateflow Block
	Sampled Stateflow Block Example

	Defining an Inherited Stateflow Block
	Inherited Stateflow Block Example

	Defining a Continuous Stateflow Block
	Considerations in Choosing Continuous Update
	Continuous Stateflow Block Example

	Defining Function Call Output Events
	Function Call Output Events Example
	Function Call Semantics Example

	Defining Edge-Triggered Output Events
	Edge-Triggered Semantics Example

	Creating Chart Libraries
	MATLAB Workspace Interfaces
	Examining the MATLAB Workspace in MATLAB
	Interfacing the MATLAB Workspace in Stateflow

	Interface to External Sources
	Exported Events
	Exported Event Example

	Imported Events
	Imported Event Example

	Exported Data
	Exported Data Example

	Imported Data
	Imported Data Example

	Working with Structures and Bus Signals in Stateflow
	About Stateflow Structures
	Elements of Stateflow Structures
	What You Can Do with Structures
	Example of Stateflow Structures
	Structure Definitions in sfbus_demo Stateflow Chart
	Structure Definitions in sfbus_demo Stateflow Graphical Function
	Simulink Bus Objects Define Stateflow Structures

	Defining Structures in Stateflow
	Rules for Defining Structure Data Types in Stateflow
	Defining Structure Inputs and Outputs
	Interfacing Stateflow Structures with Simulink Bus Signals
	Working with Virtual and Nonvirtual Buses

	Defining Local Structures
	Defining Temporary Structures
	Defining Structure Types with Expressions

	Structure Operations
	Indexing Sub-Structures and Fields
	Assigning Values
	Getting Addresses

	Integrating Custom Structures in Stateflow
	Debugging Structures in Stateflow

	Truth Table Functions
	What Is a Truth Table?
	Language Options for Stateflow Truth Tables
	Stateflow Classic Truth Tables
	Embedded MATLAB Truth Tables
	Selecting a Language for Stateflow Truth Tables
	Migrating from Stateflow Classic to Embedded MATLAB Truth Tables

	Using Truth Tables
	Building a Simulink Model with a Stateflow Truth Table
	Adding a Stateflow Block that Calls a Truth Table Function
	Creating a Simulink Model
	Creating a Stateflow Truth Table
	Specifying Properties of Truth Table Functions in Stateflow
	Calling a Truth Table in a Stateflow Action
	Creating Truth Table Data in Stateflow and Simulink

	Programming a Truth Table
	Opening a Truth Table for Editing
	Selecting An Action Language
	Entering Truth Table Conditions
	Entering Truth Table Decisions
	The Default Decision Column

	Entering Truth Table Actions
	Setting Up the Action Table
	Programming Actions in Stateflow Classic Action Language
	Programming Actions in Embedded MATLAB Action Language

	Assigning Truth Table Actions to Decisions
	Rules for Assigning Actions to Decisions
	How to Assign Actions to Decisions

	Adding Initial and Final Actions

	Debugging a Truth Table
	Checking Truth Tables for Errors
	Debugging a Truth Table During Simulation
	Using Stateflow Debugging Tools
	Using Embedded MATLAB Debugging Tools

	Correcting Overspecified and Underspecified Truth Tables
	Defining an Overspecified Truth Table
	Defining an Underspecified Truth Table

	Model Coverage for Truth Tables
	How Stateflow Realizes Truth Tables
	Viewing Generated Content
	How Stateflow Generates Graphical Functions for Truth Tables
	How Stateflow Generates Embedded MATLAB Code for Truth Tables

	Truth Table Editor Operations
	Truth Table Editor Reference
	Adding or Modifying Stateflow Data
	Appending Rows and Columns
	Compacting the Table
	Deleting Text, Rows, and Columns
	Diagnosing the Truth Table
	Viewing Generated Content
	Editing Tables
	Inserting Rows and Columns
	Moving Rows and Columns
	Printing Tables
	Selecting and Deselecting Table Elements
	Undoing and Redoing Edit Operations
	Viewing the Stateflow Diagram for the Truth Table

	Searching and Replacing Text in Truth Tables
	Using Row and Column Tooltip Identifiers

	Using Embedded MATLAB Functions
	Introduction to Embedded MATLAB Functions
	Building a Simulink Model with a Stateflow Embedded MATLAB Funct
	Programming a Stateflow Embedded MATLAB Function
	Debugging a Stateflow Embedded MATLAB Function
	Checking Embedded MATLAB Functions for Syntax Errors
	Run-Time Debugging for Embedded MATLAB Functions

	Model Coverage for an Embedded MATLAB Function
	Types of Model Coverage in Embedded MATLAB Functions
	Creating a Model with Embedded MATLAB Function Decisions
	Understanding Embedded MATLAB Function Model Coverage
	Model Coverage for Embedded MATLAB Function run_intersect_test
	Coverage for Embedded MATLAB Function rect_intersect

	Working with Structures and Bus Signals in Stateflow Embedded MA
	About Structures in Stateflow Embedded MATLAB Functions
	Defining Structures in Stateflow Embedded MATLAB Functions
	Rules for Defining Structures in Stateflow Embedded MATLAB Funct
	Defining Structure Inputs and Outputs to Interface with Bus Sign
	Defining Local and Persistent Structure Variables

	Building Targets
	Overview of Stateflow Targets
	What Is a Simulink RTW Target?
	What Is a Stateflow Target?

	How Do You Build a Target?
	How Does Stateflow Build into Targets?
	Adding Stateflow Targets
	Adding Stateflow Custom Targets
	Adding Custom Code to Stateflow in Library Models

	Configuring a Simulation Target for Stateflow
	Configuring Real-Time Workshop for Stateflow
	Configuring Stateflow Blocks in Nonlibrary Models for Real-Time
	Configuring Stateflow Blocks in Library Models for Real-Time Wor

	Configuring a Custom Target in Stateflow
	Integrating Custom Code with Stateflow Targets
	Specifying Custom Code Options for Stateflow Targets
	References

	Specifying Relative Paths for Custom Code
	How Stateflow Searches Relative Paths
	Path Syntax Rules

	Including Custom C++ Code

	Starting the Build
	Starting a Simulation Target Build
	Starting an RTW Target Build

	Parsing Stateflow Diagrams
	Calling the Stateflow Parser
	Parser Error Checking
	Parsing Diagram Example

	Resolving Event, Data, and Function Symbols
	Symbol Autocreation Wizard

	Error Messages
	Parser Error Messages
	Code Generation Error Messages
	Compilation Error Messages

	Generated Files
	S-Function MEX-Files
	Code Files
	Makefiles

	Debugging and Testing
	Debugging with the Debugging Window
	Setting Breakpoints for Debugging
	Setting Global Breakpoints
	Setting Local Breakpoints

	Setting Error Checking in the Debugging Window
	Starting Simulation in the Debugging Window
	Controlling Animation in the Debugging Window
	Controlling the Execution Rate in the Debugging Window
	Setting the Output Display Pane

	Debugging Run-Time Errors Example
	Create the Model and Stateflow Diagram
	Debugging the Stateflow Diagram
	Correcting the Run-Time Error

	Debugging State Inconsistencies
	Causes of State Inconsistency
	Detecting State Inconsistency
	State Inconsistency Example

	Debugging Conflicting Transitions
	Detecting Conflicting Transitions
	Conflicting Transition Example

	Debugging Data Range Violations
	Types of Data Range Violations
	Detecting Data Range Violations
	Data Range Violation Example

	Debugging Cyclic Behavior
	Cyclic Behavior Example
	Flow Cyclic Behavior Not Detected Example
	Noncyclic Behavior Flagged as a Cyclic Example

	Watching Data Values with Debuggers
	Watching Data in the Stateflow Debugger
	Watching Stateflow Data in MATLAB Command Window

	Monitoring Stateflow Test Points
	Setting Test Points for Stateflow States and Local Data with Mod
	Logging Data Values and State Activity
	Using a Floating Scope to Monitor Data Values and State Activity

	Understanding Model Coverage for Stateflow Charts
	Making Model Coverage Reports
	Specifying Coverage Report Settings
	Cyclomatic Complexity
	Decision Coverage
	Chart as a Triggered Simulink Block Decision
	Chart Containing Exclusive OR Substates Decision
	Superstate Containing Exclusive OR Substates Decision
	State with On Event_Name Action Statement Decision
	Conditional Transition Decision

	Condition Coverage
	MCDC Coverage
	Coverage Reports for Stateflow Charts
	Summary Report Section
	Chart as Subsystem Details Report Section
	Chart as Superstate Details Report Section
	State Details Report Section
	Transition Details Report Section

	Colored Stateflow Diagram Coverage Display
	Displaying Model Coverage with Model Coloring

	Exploring and Modifying Charts
	Using the Model Explorer with Stateflow Objects
	Viewing Stateflow Objects in the Model Explorer
	Editing States or Charts in the Model Explorer
	Adding Data and Events in the Model Explorer
	Adding a Target in the Model Explorer
	Renaming Objects in the Model Explorer
	Setting Properties for Stateflow Objects in the Model Explorer
	Moving and Copying Data, Events, and Targets in the Model Explor
	Changing the Port Order of Input and Output Data and Events
	Deleting Data, Events, and Targets in the Model Explorer

	Using the Stateflow Search & Replace Tool
	Opening the Search & Replace Tool
	Using Different Search Types
	Contains word
	Match case (Case Sensitive)
	Match whole word
	Regular expression
	Searching with Regular Expression Tokens
	Preserve case

	Specify the Search Scope
	Search in
	Object Types
	Field Types

	Using the Search Button and View Area
	A Breakdown of the View Area
	The Search Order
	Additional Display Options

	Specifying the Replacement Text
	Replacing with Case Preservation
	Replacing with Tokens

	Using the Replace Buttons
	Replace
	Replace All
	Replace All in This Object

	Search and Replace Messages
	Please specify a search string
	No Matches Found
	Search Completed
	Invalid option set
	Match object not currently editable
	Search object not found
	Match object not found
	Match not found
	Search string changed

	Using the Stateflow Finder Tool
	Opening Stateflow Finder
	Using Stateflow Finder
	String Criteria
	Search Method
	Object Type
	Find Button
	Matches
	Refine Button
	Search History
	Clear Button
	Close Button
	Help Button

	Finder Display Area
	Representing Hierarchy

	Semantic Rules Summary
	Entering a Chart
	Executing an Active Chart
	Entering a State
	Executing an Active State
	Exiting an Active State
	Executing a Set of Flow Graphs
	Executing an Event Broadcast

	The Stateflow Block
	The Truth Table Block
	Glossary
	Index

